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a  b  s  t  r  a  c  t

How  uncertainties  are  generated  in  deterministic  geophysical  fluid
flows  is  an  important  but  mostly  overlooked  subject  in  the  atmo-
spheric  and oceanic  research.  In  this  study,  it  is  shown  that the
generating mechanisms  include  local  entropy  generation  (LEG)
and  cumulant  information  transfer,  both  of  which  are  explicitly
expressed  with  the  aid  of  a theorem  established  herein.  To  a  sys-
tem  the  former  is  intrinsic,  representing  the evolutionary  trend  of  a
marginal  entropy  and  bringing  connections  between  the  two  phys-
ical  notions  namely  uncertainty  and  instability.  The  latter  results
from  the  interaction  between  different  locations  through  dynamic
event  synchronization,  and  appears  only  in  the  course  of  state
evolution.  Although  in practice  it is a notoriously  difficult  task  to
estimate  entropy  and  entropy-related  quantities  for  atmospheric
and  oceanic  systems,  which  are  in  general  of  large  dimensionality,
estimation  of  the  LEG  can be  accurately  fulfilled  with  ensembles
of limited  size.  If,  furthermore,  the  processes  of a system  under
consideration  are  quasi-ergodic  and  quasi-stationary,  its  LEG  actu-
ally  can  be  fairly  satisfactorily  estimated  even  without  appealing  to
ensemble  predictions.  These  assertions  are  illustrated  and  verified
in  an  application  with  two  simulated  quasi-geostrophic  jet  streams
with  compact  chaotic  attractors,  one  global  over  the  whole  domain
and  another  highly  localized.  The  LEG  study  provides  an objective
way  of  rapid  assessment  for  predictions,  which  is  important  in the
practical  fields  such  as  adaptive  sampling  and adaptive  modeling.
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1. Introduction

Ever since the discovery of chaos by Lorenz (1963),  uncertainty has become one of the major con-
cerns in the field of numerical weather forecasts and ocean predictions. Numerous studies have been
conducted in this regard; among them are Epstein (1969),  Leith (1974),  Carnevale and Holloway (1982),
Farrell (1990),  Nese et al. (1996),  Ehrendorfer and Tribbia (1997), Toth and Kalnay (1993),  Roache
(1997), Shukla (1998),  Schneider and Griffies (1999),  Moore (1999),  Smith et al. (1999), Palmer (2000),
Kleeman (2002, 2008),  Mu  et al. (2002),  Miller and Ehret (2002),  Kirwan et al. (2003),  DelSole (2004),
Lermusiaux (2006),  Tang et al. (2008),  to name several. Given a model, uncertainties may  result from
boundary conditions, initial conditions, geometric specifications, dynamical parameters, numerical
schemes, model inacurracies, random external forcings, etc. But what makes uncertainty study such
an extensive arena of research is the intrinsic source that is embedded in nonlinear dynamical systems.
As observed by Lorenz (1963),  for a highly nonlinear system like the atmosphere, even the model is
deterministic, its outcome may  appear chaotic and is hence intrinsically unpredictable beyond some
time limit. The present study concerns about how uncertainties are generated within determinis-
tic flows, a subject not only of theoretical interest from the viewpoint of ensemble dynamics, but
also of practical importance in that, for example, it provides an objective way  of model performance
assessment, and offers guidance for adaptive sampling (Lermusiaux, 2007).

A natural way to quantify uncertainty is with entropy, i.e., entropy in the Shannon sense (see Cove
and Thomas, 1991). (Note here we are not dealing with predictability, an area where one has to use
relative entropy; see Kleeman, 2002.) Uncertainty generation is thus about how entropy is changed.
Given a dynamical system, autonomous or non-autonomous,

du
dt

= F(u, t), u = (u1, u2, . . . , un), (1)

Liang and Kleeman (2005) showed and later on rigorously proved (Liang and Kleeman, 2007b)  that
the joint entropy H of (u1, u2, . . .,  un) (units: nats) evolves as

dH
dt

= E(∇ · F), (2)

where E stands for mathematical expectation, and ∇· is the divergence operator with respect to u. This
remarkably concise law, which holds for systems of arbitrary dimensionality, states that the global
uncertainty evolution of a system is completely controlled by the expansion/contraction of its phase
space. Particularly, if the flow of the vector field of a system is divergence free, then its uncertainty is
invariant. So if the whole ocean is taken as one sample space and particle trajectories are considered,
then H must be conserved, as the sea water is incompressible. If the same study is performed with the
atmosphere (e.g., pollutant dispersion), apparently this is not true. But if one examines the problem
in an isobaric coordinate frame, in which the atmosphere is incompressible, H then must also be
conserved.

For real atmospheric/oceanic problems, the systems of concern are usually not treated as a whole.
Correspondingly, uncertainty in this sense is a local notion; that is to say, it has a distribution over the
domain where it is defined. Given a state variable u with components (u1, u2, . . .,  un), the uncertainty
of u at location k is measured by the marginal entropy of uk, written Hk. The uncertainty generation
problem is thus essentially about how Hk changes as time goes on. Through studying the distribution
of dHk/dt  in k we are able to identify the uncertainty sources/sinks, which will allow us to understand
whether, when, and where a model may  amplify the existing uncertainties for a state variable.

To find the time rate of change of a marginal entropy, one might think of first computing
the marginal entropy directly with the probability density functions (pdf) from a given ensem-
ble of predictions, and then computing its time variation. This is, however, notoriously difficult in
atmosphere-ocean research, as an accurate estimation of the pdf requires a densely sampled state
space, while atmospheric and oceanic systems are usually of huge dimensionality, allowing for only
limited ensembles. A simple calculation may  yield some hint about the difficulty: For a system with
only 6 EOF modes, assuming 5 draws for each mode (a minimal requirement as argued by Kleeman,
2007) one obtains 56 = 15,625 members for the ensemble, which is already beyond the present normal
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computational capability. In fact, previous experiences (e.g., Kleeman, 2008) have shown that, even
for a Gaussian distribution, it is difficult to have the covariance matrix accurately estimated.

The exponential computational complexity poses a continuing challenge to the studies of uncer-
tainty and uncertainty-related problems; it becomes particularly severe in the practical fields such as
adaptive sampling, where a rapid assessment of the prediction is needed to decide where to make the
next observation. We  therefore have to seek alternative approaches to the estimation of the marginal
entropy rate dHk/dt.  Inspired by the above concise law namely (2),  possibly we  may  first arrive at for
dHk/dt  a formula that is as easy to handle as (2),  and then use the formula to do the remaining work. But,
as we will see in the next section, this is not the case. The resulting formula for dHk/dt  also requires an
accurate estimation of the density functions and is hence impractical for large systems. Nonetheless,
by carefully classifying the mechanisms that govern the increase of Hk, one will find that a key part
that is intrinsic to the model itself and shows the trend of dHk/dt  actually can be fairly accurately esti-
mated. That is to say, the uncertainty generation problem can be at least partially solved. The present
study is devoted to the establishment and demonstration of this, using a barotropic quasi-geostrophic
(QG) jet stream model.

An introduction of the theory is presented in the following section, where a theorem is proved with
the proof placed in Appendix A. The application model is then set up (Section 3), and some solutions are
briefly described (Section 4). In the interest of readership, some lengthy derivation is put in Appendix
B. We  choose two chaotic attractors for the uncertainty generation study, the results being presented
in Sections 5 and 6, respectively. We  then show that, remarkably, similar results can be obtained to a
fairly satisfactory extent without resorting to ensemble predictions (Section 7). In Section 8 this study
is concluded and some remaining problems are discussed.

2. Uncertainty generation

2.1. Local entropy generation and cumulant information transfer

Consider the system (1),  i.e., du/dt = F(u, t), where u = (u1, u2, . . . , un) ∈ R
n. We  use u instead of the

conventional notation x to denote the state variables in order to avoid confusion with the physical
space dimension x. Let � = �(u) = �(u1, u2, . . .,  un) be the joint probability density function (pdf) of u.
Then there is a Liouville equation (cf. Lasota and Mackay, 1994) governing the evolution of �:

∂�

∂t
+ ∇ · (F�) = 0. (3)

Here the divergence is taken with respect to the n components of u. We  have shown in the introduction
that the global uncertainty generation for the whole system, i.e., the evolution of the joint entropy

H = −
∫
Rn

�(u) log �(u) du,

is governed by a law expressed in (2),  as obtained by Liang and Kleeman (2005).  Locally for each k = 1,
2, . . .,  n, the uncertainty is respectively represented by the marginal entropies of uk, i.e.,

Hk = −
∫
R

�k(uk) log �k(uk) duk, (4)

of which the evolution equation has also been obtained (Liang and Kleeman, 2005):

dHk
dt

= −E
(
Fk
∂ log �k
∂uk

)
. (5)

(This is an equivalent expression of the Eq. (8) in Liang and Kleeman, 2005.) As mentioned in the
introduction, this formula, though seemingly simple, is actually very difficult to compute, with the
involvement of the derivative ∂ log �k/∂uk. In evaluating the marginal density �k, one needs to dis-
cretize the sample space and count the bins. The accuracy here is not much guaranteed, let alone the
logarithm and, particularly, the derivative with respect to the coarse-grained sample space.
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To circumvent the difficulty, look at the mechanisms that account for the marginal entropy evolu-
tion. For location k, the mechanisms may  be classified into two  categories by proximity to k. In other
words, the uncertainty at location k has two distinctly different sources: one local source from k itself,
one remote source from other locations. Correspondingly the right hand side of (5) can be decom-
posed into two parts: one resulting from the local mechanism, written dH∗

k
/dt; another from remote

locations (written Tother→k) through a mechanism called information transfer or information flow as
may  be referred to in the literature. Information transfer/flow accounts for the causal relation between
different locations; it is a fundamental concept in general physics which has important applications in
a wide variety of disciplines. It has been of interest in scientific communities for decades but has just
been rigorously formulated (Liang and Kleeman, 2005, 2007a,b; Liang, 2008). Here Tother→k actually
results from the cumulant information transferred to location k, i.e.,

Tother→k =
n∑

� = 1
� /=  k

T�→k, (6)

where T�→k is the information transfer from � to k as derived in Liang and Kleeman (2007b) (cf. Eq. (54)
in their paper). We  will henceforth refer to dH∗

k
/dt and Tother→k respectively as the rate of local entropy

generation and the rate of cumulant information transfer, or LEG and CIT for short. In principle, the
information transfer between locations � and k has been explicitly obtained in Liang and Kleeman
(2007b), and the CIT to K follows from (6) accordingly. Unfortunately, the afore-mentioned issue of
computational complexity still exists in the formula as it requires evaluation of the joint density and
its derivatives.

In contrast, the LEG evaluation does not have this problem. For location k, Liang and Kleeman (2005)
intuitively argued that dH∗

k
/dt = E

(
∂Fk/∂uk

)
based on the concise form of Eq. (2).  In the 2D case, this

is indeed true, as has been established by Liang and Kleeman (2007b) in their Theorem 1. For a system
of arbitrary dimensionality, we claim that this also holds, hence comes the following theorem:

Theorem 1. For an n -dimensional system du/dt = F(u, t), the rate of local entropy generation (LEG) at
location k is

dH∗
k

dt
= E

(
∂Fk
∂uk

)
, k = 1, 2, . . . , n. (7)

Remark. Fk is generally a function of all the components of u; E is hence the mathematical expectation
with respect to the joint pdf of u, not just with respect to that of uk.

Proof. The proof is rather technically involved; it follows the strategy in Liang and Kleeman (2007b)
but for different purpose. Refer to Appendix A for details. �

It is interesting to observe that LEG, and hence local uncertainty generation, is intrinsic to physical
models. This is especially clear in the case of linear models. To see it, consider a system with a vector
field

F(u) = A u, where A = (aij) is some matrix.

By (7) its LEG at location k is:

dH∗
k

dt
= E

(
∂Fk
∂uk

)
= E

[
∂

∂uk

n∑
�=1

ak�u�

]
= akk,

which has no dependence on u. That is to say, once a model is set up, its local uncertainty generation
is completely determined.

The intrinsicity of LEG is rooted in its underlying relation with instability. Uncertainty and instability
are two different physical notions, though in the literature people often use them simultaneously
(sometimes even mix  them together in a confusing way). But they do connect to each other. For
instance, one may  argue that uncertainty increase implies instability, for a stable or asymptotically
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stable system only leads to more certain states. The above theorem actually shows this connection in a
quantitative way: Eq. (7) gives the average of the Lyapunov exponents for the corresponding linearized
systems over all the possible perturbations localized at k. So if a system is stable/unstable under all
the perturbations it must be certain/uncertain, i.e., with non-increasing/increasing uncertainties. But
for more generic cases, the correspondence is not one-to-one anymore; it is complicated by the mean
operator in (7),  which tells that uncertainty is a “bulk” notion, not about individual unstable or stable
events. That is to say, instability alone does not imply uncertainty increase. For a system, instabilities
and stabilities may  coexist, and the effect of the former may  be canceled out by that of the latter,
leading to no local uncertainty growth.

That LEG accounts for the intrinsic part of the marginal entropy variation is further substantiated by
the observation that CIT occurs only in the course of state evolution, for information transfers through
dynamic interactions between events. An example is shown in Liang (2008, Fig. 1c) where the transfer
from one state to another spins up from zero to some limit, while the entropy production local to the
latter is a constant in the absence of stochasticity. LEG is therefore ideal for characterizing the “static”
part or potential of uncertainty generation, i.e., the potential of uncertainty generation embedded in
the model itself.

The concise form of (7) implies that, in computing the LEG of a system, only involved is the expecta-
tion of some value from the model. By the law of large numbers, the expectation can be approximated
by an ensemble average, and hence it can be easily evaluated without counting bins in the discretized
sample space. Indeed, as we will see soon in the following two  applications, even with an ensemble
of very limited size (say, with only 20 members), the computed LEG is still satisfactory.

2.2. Local entropy generation over a collection of phase space locations

When talking about uncertainty generation, sometimes we may not refer to a specific location, but
to a subspace. Besides, the governing equations in question usually have more than one dependent
variables. When written in the form of a dynamical system, different locations in phase space, i.e.
different indices in Eq. (1),  may  correspond to one single spatial location in physical space. For example,
a 2D shallow water model with the rigid-lid assumption has two prognostic variables, namely, the
horizontal velocity components vx and vy. If the governing equations are discretized on a grid with
N mesh points, we obtain a 2N-dimensional system in the form of Eq. (1).  If the state variables are
arranged as u = (vx1, vx2, . . . vxN; vy1, vy2, . . . , vyN)T , then uk and uN+k, for k = 1, 2, . . .,  N, correspond
to the same location in physical space, say �. So when we  talk about the uncertainty generation at �,
we are actually referring to the joint uncertainty generation of uk and uN+k. All these motivate one to
examine the joint uncertainty generation over a collection of some components of u.

Theorem 2. For Eq. (1),  the joint entropy of components uk and u� with effects from all other components
excluded evolves as

dH∗
k�

dt
= E

(
∂Fk
∂uk

+ ∂F�
∂u�

)
, k, � = 1, 2, . . . , n. (8)

Proof. The proof follows precisely the same track as that for Theorem 1, with the univariable Taylor
series expansion replaced by multivariable Taylor series expansion. �

Equation (8) can be straightforwardly generalized to the case with arbitrarily many components.
The result is the sum of the contributions from those individual components. Correspondingly the CIT
follows by subtracting the LEG from the marginal entropy rate.

2.3. Compact support and compact subspace

The above formulas are over the entire sample space, which may  be too large to handle. The problem
becomes particularly severe when the system, such as the atmosphere or ocean, has a large dimen-
sionality, with which one can only generate ensembles of limited size. As mentioned before, this makes
uncertainty estimation a challenging task.
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Fig. 1. Model configuration. Also shown is a schematic of the basic flow profile.

Fortunately, things are not that bad if one notices that, in establishing the theorems, the only
“assumption” that we have used is that the pdf (and sometimes its derivatives) over a sample space
� should vanish at its boundaries. In the above we deal with the entire sample space so this is of
course true, otherwise it would not be the entire space. With this one may  easily reason that, the
theorems equally hold if the integration domain is a subspace of � bounded by the zero density (and
density variation) contour(s). More formally, if � and its derivatives are compactly supported on �,  we
may focus on the support that makes a subspace. The uncertainty generation in this case thus follows
precisely the above laws though here we are actually dealing with just a subspace. When the subspace
has small dimensionality, the LEG and CIT can be conveniently computed by the above theorems.
Fortunately again, for infinite dimensional nonlinear dynamical systems, it is a common feature that
there usually exist some kind of compact attractors with finite dimensionality (e.g., Temam, 1997).
Examples may  be seen in the following applications. Note such is not the case for linear systems. In this
sense, nonlinearity actually does a favor to our analysis, though people usually prefer linear systems
to nonlinear systems when picking problems to work on.

3. The application model

The above theory is now applied to atmospheric studies. Consider a free-evolving and frictionless
two-dimensional quasi-geostrophic jet stream confined within two  latitudes (Fig. 1). Its dimensionless
governing equation is (e.g., Pedlosky, 1987; Marshall and Plumb, 2008; Huang, 2010)

∂L 
∂t

+ ∂ 

∂x

∂L 
∂y

− ∂ 

∂y

∂L 
∂x

+ ˇ
∂ 

∂x
= 0,

where   is the streamfunction, (x, y) are the spatial coordinates directing eastward and northward,
respectively, and  ̌ is the meridional derivative of the Coriolis parameter (scaled by velocity scale over
length scale squared). In the equation, we adopt the notation L,  instead of ∇2, for the Laplacian:

L = ∂2

∂x2
+ ∂2

∂y2
,

in order to avoid possible confusion with the divergence operator in (2),  which is with respect to u = (u1,
. . .,  un). With this the vorticity field is simply L . All these variables are dimensionless. Consider a
rectangular domain [0, 10] × [− 1, 1]. The boundary is slip in y and periodic in x. That is to say,

  = const, y = ±1 (9)

 (10, y) =  (0, y), −1 ≤ y ≤ 1. (10)

Choose a basic zonal flow (U(y), 0) and decompose the streamfunction   into a background part �
and a perturbation  ′

  = � +  ′
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such that

∂�

∂y
= −U(y), or � = �(y) = −

∫
U(y)dy + C, (11)

with C an integral constant to be determined by the boundary conditions. The original governing
equation becomes

∂

∂t
L ′ + ∂ ′

∂x

∂L ′

∂y
− ∂ ′

∂y

∂L ′

∂x
+ U

∂

∂x
L ′ + (  ̌ − Uyy)

∂ ′

∂x
= 0.

For the sake of notation simplicity, drop the primes with the variables;   henceforth stands for the
perturbation streamfunction. Without loss of generality, further let  ̌ = 0. This is justified by the obser-
vation that  ̌ and −Uyy are acting the same role in the equation, and hence one for sure can take into its
effect by adjusting the meridional structure of the background flow. The resulting governing equation
for the perturbation streamfunction is, therefore,

∂

∂t
L  + ∂ 

∂x

∂L 
∂y

− ∂ 

∂y

∂L 
∂x

+ U
∂

∂x
L  − Uyy

∂ 

∂x
= 0.

Due to their linearity, the operators L and ∂/∂t are commutable. The evolution of   thus can be
obtained:

∂ 

∂t
= L−1

[
−∂ 
∂x

∂L 
∂y

+ ∂ 

∂y

∂L 
∂x

− U
∂

∂x
L  + Uyy

∂ 

∂x

]
. (12)

It is easy to see that the boundary conditions are the same in form as (9) and (10), with   now under-
stood as the perturbation streamfunction. Throughout the study, the basic velocity profile U = U(y) is
fixed to be cosine:

U = cos2 �

2
y. (13)

This is what Kuo originally chose in his model (see Kuo, 1973), a well-known barotropic jet unstable
to a spectrum of disturbances.

To solve, Eq. (12) is discretized using the finite-difference method. Here we adopt a leap-frog
scheme for the differencing, which maintains an accuracy of the second order while keeping the
features from being damped. This is important, as in many cases damping may  destroy the unstable
scenario and steer the state to a different (usually stable) equilibrium. But this scheme is also known
to be time-splitting, and the developed computational modes in time may  blow up the integration.
We deal with this issue by applying a weak three-point time filter (with a coefficient 0.01) every
100 time steps. It successfully suppresses the numerical instability while not hurting the physical
instability. In this study, the domain is partitioned into 50 × 51 mesh grids, and correspondingly,
the horizontal spacings are 	x  = 0.2 and 	y  = 0.04. This resolution might be a little coarse, but for a
manageable dimension size for ensemble prediction, we have to live with it. Anyhow, as we  claimed in
the beginning, the main purpose of this application is to demonstrate through the jet stream problem
how the ideas can be utilized for uncertainty studies, rather than to perform a detailed study of the jet
stream itself. In doing so the infinite state space for   is approximated by a finite-dimensional space,
and a system of finite dimensionality results accordingly. In this case, the system has 2550 dimensions.

We will henceforth only deal with the so-obtained 2550-dimensional system, and forget about the
original QG model. (This is because, though with the same physical model, different numerical schemes
may result in different dynamical systems.) Clearly here the vector field F has no explicit dependence
on time; that is to say, what we have is an autonomous system for   at an array of discrete locations.
We solve it with a uniform time step 	t  = 0.0005. To compute its LEG, we need to find the differential
of the vector field, DF. For this problem, it is easier to begin with the vector field of the discretized
vorticity equation, which we denote by F
 . With a central difference scheme, obviously the matrix DF
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Fig. 2. (a) Singular value vs. SVD mode number. (b) A close-up of (a).

has at most twelve nonzero entries, which can be easily written out; see Appendix B for details. Once
this is known, the differential of the vector field for  , i.e., DF, is

DF = L−1DF
. (14)

where L is the discretized Laplacian operator L,  and L−1 its inverse. The diagonal entries of DF are what
we need for the LEG evaluation.

4. Several attractors

4.1. Optimal excitation

To start our uncertainty study, first look at the unstable solutions of (12) that may  lead to a chaotic
scenario. Initially when the perturbation is small, (12) can be linearized, and the first-order dynamics
is in the form of

du
dt

= Au, with A =
(
∂Fk
∂u�

)
u=0

being a linear operator. (15)

The optimal perturbation which leads to a maximal growth is given by the singular value decompo-
sition (SVD) of eAt, as established in Farrell and Ioannou (1996). Here time t affects only the absolute
size of the singular values; it does not have effect on the resulting optimal modes. We  set it to be 1.
Plotted in Fig. 2 are the singular values, ordered by magnitude. From it we see that the growth rate
is almost the same for the first 26 modes (decreases from 2.63 to 2.5), and decreases to 1.7 at mode
100, indicating that the optimal basis has a large dimension. In Fig. 3, the structures of mode 1 and
mode 100 are contoured. They are normalized, and mutually orthogonal. Though different in scale and
orientation, they are similar in that they both have perturbations located in the neighborhood of the
inflection points on the basic velocity profile. Besides, all the perturbations are oriented in opposition
to the profile to allow the kinetic energy to be extracted from the background. For other modes, the
structures are different. As shown in Fig. 4, one sees a completely different scenario on the patterns of
mode 500 and mode 750. Although they still have a bending structure toward the left (west) against
the stream, the perturbations are trapped around the axis (y = 0) and near the boundaries (y = ± 1).

That the first major optimal modes all have the perturbations around the inflection points of the
basic velocity profile has its dynamical origin in the energy transfer structure with the Kuo model.
Liang and Robinson (2007) demonstrated that on the canonical transfer distribution, the inflection
regions act as two sinks of perturbation energy, though in all other regions the flow is unstable. One
natural selection of the optimal perturbation is, therefore, to have the two sinks inhibited, and that is
precisely what is shown above with the optimal modes.
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Initialized with these modes, the governing equation (12) is integrated forward. We  first take a
look at the result with the most optimal perturbation mode, i.e., mode 1. In order not to shock the
system too much, the initial condition is taken as the normalized mode multiplied by a factor 0.20.
That is to say, the perturbation amplitude used for initialization is 0.20.

Just as predicted by Farrell’s generalized stability theory, the system is very unstable. It undergoes
a series of rapid changes in pattern before reaching a statistical equilibrium. The original reflection
symmetry about the zonal axis is quickly broken, and, by time t = 5, it has been organized into a
pattern with negative and positive perturbations respectively dominating the south and north, and
hence a strong perturbation flow counteracting the jet stream. This south-north anti-symmetry is
reversed at t = 10, when the strongest perturbation moves to the central axis. The emergence of this
axially trapped perturbation changes the 2-peak structure into a 3-peak structure in the meridional
direction. It then gradually connects the northern and southern peaks, making the whole perturba-
tion field into a zonal wave form, with a meridional structure bending to the east (in opposition
to the original orientation on the perturbation pattern). This scenario has been evident by t = 25.
But it does not last long; from t = 30 to t = 40, it is quickly reorganized into a wave with 8 peaks
in x, and 3 peaks in y. After that, the energy is gradually transferred toward large scales, leaving
a wave with 3 zonal wavenumbers (t = 50). Later on at t = 75, the 3-wave is changed into a form
with 3 peaks plus 2 valleys and, finally, evolves into a zonal wave with 2 wavenumbers, as shown in
Fig. 5.

An observation with this simulation is that, in the course of evolution, the patterns appear to be
fairly regular. That is to say, though the system is very unstable, the reconstructed instability structures
seem to be certain to a large extent. This is somehow not what we  want for the application, as we
would like to seek an example with enhanced feature of uncertainty to test our theory developed
earlier on. For this reason, we turn to another optimal mode, mode 100.

Integration of the system (12) with an initial condition as shown in Fig. 3b (multiplied by 0.20)
reveals a similar route for the perturbation field toward its statistical equilibrium. For example, it also
begins with a breaking of the reflection symmetry about the zonal axis, followed by an oscillation
of the negative/positive re-arrangement of the perturbation streamfunction in the south and north,
which is accompanied by a reversing of the perturbation flow. The difference is that these events take
slightly longer time. But afterwards, the duration of the 3-wavenumber stage is much shorter; as a
result, the 2-wavenumber equilibrium is early reached by t = 60 or so (see Fig. 6). Another difference
is that the scenario in this case reveals much more chaotic details, as is easy seen when comparing



60 X.S. Liang / Dynamics of Atmospheres and Oceans 52 (2011) 51– 79

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mode 500

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mode 750

Fig. 4. Some other optimal excitation modes. The y-coordinates have been exaggerated for clarity.
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Fig. 5. The equilibrium solution initialized with the first optimal mode.

Fig. 6 to Fig. 5. Recall that it is uncertainty that we  are interested in; we will hence use this result to
build the dataset for our application.

4.2. Axially trapped excitation

The optimal excitation modes, though different in structures, all possess a large amount of pertur-
bation energy in the low-speed regions distant from the jet axis. As we  see previously, this usually
leads to a rapid re-organization of structures into larger scales due to the inverse cascade of energy
(e.g., Rhines, 1975; Haidvogel and Held, 1980; McWilliams and Chow, 1981). The process will not
cease unless the growing energy is moved away via some mechanism and a balance is established on
the energetics (Rhines, 1975). In a sluggish region, there is no mechanism to inhibit the growth (recall

 ̌ is set to zero so there is no Rossby wave propagation in this study), so we always get a basin-scale
equilibrium pattern with the optimal mode initialization.

The above interpretation motivates the consideration of an initial condition with perturbation
energy trapped at the axis, in the hope of obtaining a chaotic attractor rich in small scale features.
This makes sense, as the background velocity is maximized at the axis and, in the presence of a strong
current, the upscale transferred energy will be carried downstream, leading the inverse cascade to a
halt at some small scale. We  search for such structures within a family of unstable normal modes. Go
back to the matrix A in (15). An eigenanalysis yields a list of eigenvalues � which, if having positive
real part, indicate (exponential) instability. Corresponding to these �’s are the unstable eigenmodes.
Recall that here growth rate is not of our concern; what we need to consider is the axially trapped
structure. Fig. 7 presents such a mode, which corresponds to an eigenvalue of � = 3.12 × 10−7 + 4.98i.
(Shown in the figure is the real part; the imaginary part is the same except for a phase lag of �/2.)
Notice the large zonal structure among the small-scale features (see Fig. 7b). In the following, we will
be working with this mode, though for reference several other modes may  also be mentioned (see
Fig. 8).

Initialized with Fig. 7 (multiplied by 0.20) Eq. (12) is integrated and the result contoured. Fig. 9 is a
snapshot at the statistical equilibrium, which, for clarity, has been enlarged in the y direction. On the
whole the pattern is very chaotic, though a large feature with two enhanced centers around x = 4 and
x = 9 is visible. As will be seen in the following, this simulation serves well for our purpose.

Fig. 6. The perturbation streamfunction at t = 65 initialized with the 100th optimal mode as shown in Fig. 3b.
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Fig. 7. (a) An unstable normal mode (corresponding to eigenvalue 3.12 × 10−7 + 4.98i). (b) A close-up of (a).

5. Uncertainty generation with the globally perturbed run

We  need an ensemble of solutions of (12) to compute the LEG. As the model is deterministic, the
randomness is limited within initial conditions, so a key point here is how an ensemble of initial
conditions is formed. This section deals with the attractor shown in Fig. 6.

5.1. Ensemble formation

To generate an ensemble of initial conditions, integrate the system as shown in Fig. 6 from t = 55 for
40,000 steps to t = 75 (approximately one cycle for the observed large-scale feature). The structure of
the attractor is found by performing an EOF analysis to the so-obtained data. From the result (Fig. 10),
we see that the attractor is of low dimensionality. The first EOF mode dominates, accounting for 66%
of the variance from that in Fig. 6 (t = 65). Over 90% of the variance is within the first 3 EOF modes,
which are contoured in Fig. 11.  We  now use these three modes to generate the ensemble of initial
conditions. (We  have also tested with more modes but the final result is similar.)

For each EOF mode, compute from its corresponding projected series (denoted P1, P2, and P3
respectively) the mean and variance. Assuming that the time coefficients are normally distributed, we
hence make random draws for the coefficients according to normal distributions with their respective
means and variances. Specifically, the distributions are:

• P1: N(− 0.271, 0.0403),
• P2: N(− 0.0130, 0.0270),
• P3: N(0.0556, 0.0099),

For each mode, Kleeman (2007) argued that 5 draws will be needed. We  make 9, 7, and 5 draws
for the first, second, and third modes, respectively. This gives an ensemble of 9 × 7 × 5 = 315 members.
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Fig. 8. Several other normal modes. (a) and (b) are stable (corresponding to eigenvalues −1.83 × 10−6 + 4.95i and
−1.36  × 10−6 − 2.24i respectively); (c) is unstable (eigenvalue: 1.17 × 10−6 − 1.75i).

Another ensemble with 9 × 9 × 9 = 729 members has also been generated and tested, and the result is
essentially the same.

5.2. Uncertainty generation

With the 315 initial conditions, the system is steered forward to form ensembles of streamfunction
at different time steps. This gives, in principle, all the needed information for the evaluation of the
uncertainty generation rate.

First look at the LEG, i.e., dH∗
k
/dt, for all k. Theorem 1 tells that it is equal to the expectation of ∂Fk/∂uk,

which, given a model, can be analytically determined. By the law of large numbers, sample average
converges to the expected value. So with a sizable ensemble, this part can be accurately estimated.

To illustrate this, assume that ∂Fk/∂uk are Gaussian1 and iid variables with mean � and variance 2.
Then the sample average over an ensemble of size M is N(�, 2/M)-distributed. Inverting the cumulant
density function

F(x, �,
2

M
) = 1

2

[
1 + erf

(
x − �

/
√

2M

)]

1 This assumption makes sense, thanks to the central limit theorem.
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Fig. 9. A snapshot of the solution of (12) initialized with the axially trapped normal mode (Fig. 7). It is approximately at a
statistical equilibrium. The aspect ratio is not plotted as it should be; the y scale is exaggerated to ensure a better visualization
of  the chaotic details.
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Fig. 10. Variance vs. mode number for the EOF analysis of the globally perturbed run.
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Fig. 11. The first three EOF modes (from top to bottom) for the globally perturbed run.

to get (x − �)/(/
√

2M) ≈ 1.3855 for F = 97.5%. That is to say, the result is significant at a level of 95%
if it falls within[

� − 1.3855√
2M

, � + 1.3855√
2M

]
.

Based on the result which we will show below, with M = 315 and conservative values � = 0.1,  
 0.1,
this tells that the relative error of the estimate is far less than 5%, at a significant level of 95%. So the
local uncertainty generation can be fairly accurately estimated.

Presented in Fig. 12 are three LEG snapshots. Generally speaking, in this case the largest gen-
eration rate intrinsic to the model is near the two lateral boundaries. Also conspicuous on the
distribution are two peaks tilting toward the west, which move downstream at a speed of roughly
1/(9000 × 0.0005) = 0.22, in agreement with the eastward propagation phase celerity in Fig. 6.

As we showed previously, though uncertainty and instability are two  different notions in physics,
they are intimately related indeed. Particularly LEG is connected through Eq. (7) to localized instability
in the Lyapunov sense. With this the above structure is easily interpreted in physics. Comparing Fig. 12
to Fig. 6,2 we see that the LEG is minimal along the axis where the perturbation takes its maximal
value, while the largest LEG appears in the transition regions between the peaks and valleys where
the perturbation vanishes. This makes sense. As the system we are dealing with is nonlinear and
energy conserving, the disturbance growth ceases at its maxima. That is to say, the Lyapunov exponent
at those points is zero, and so is the LEG if the scenarios are similar for all possible disturbances.

2 To be precise, Fig. 6 corresponds to the LEG at step 1, which is not shown here. But roughly it is similar to that at step 1000
in  Fig. 12.
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Fig. 12. The LEG at steps 1000 (t = 0.5), 5000 (t = 2.5), and 10,000 (t = 5), for the globally perturbed run. The units are in nats per
unit  time.

On the other hand, when   at a location is first perturbed, disturbances grow the fastest (usually
exponentially). So for a   distributed as in Fig. 6, the LEG must be maximized toward the two  lateral
boundaries.

Another observation of Fig. 12 is that, in the south (y < 0), the LEG takes positive (resp. negative)
values where   makes transitions from negative to positive (resp. from positive to negative) as x
increases, while in the north (y > 0) the scenario is reversed. This results from a joint effect of the flow
and the solid boundaries. Take the southern half for an example. When   increases in x from negative
to positive, ∂ /∂x > 0, which gives a northward perturbation flow. This flow causes a divergence near
the southern boundary, and hence locally a positive Lyapunov exponent. A positive LEG is therefore
expected there. If the same gradient appears in the north, the northward flow will produce a con-
vergence near the northern boundary, resulting in a local negative Lyapunov exponent and hence a
negative LEG. This explains why from Fig. 6 we obtain a westward slanting structure for the LEG, and
why LEG is maximized toward the boundaries.

In contrast to the simplicity in the LEG evaluation, the CIT, and the rate of marginal entropy
Hk = −

∫
�k(uk)log �k(uk)duk, are difficult to compute, and it is not our intention to examine them

in this study. Nonetheless, one may  want to see through this application how LEG makes its part in
dHk/dt.  We  hence make a rough computation of Hk with the available ensemble members and then
compute dHk/dt.  Here again problems arise when evaluating the time derivative. Any inaccuracy of
the computed Hk, however small it is, may  be amplified and lead to very large oscillation on the time
series of dHk/dt.  As a result the spatial distributions are contaminated by random spots with huge spu-
rious values. Here we deal with this by outputting Hk every twenty time steps, and then use central
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Fig. 13. Time series of the LEG (upper) and the marginal entropy rate (lower) at grid point (25,10) for the globally perturbed
run. Also shown in the lower panel is the linearly fitted line.

differencing scheme to get a first estimate of dHk/dt.  The so-obtained time series is then smoothed by
applying 50 times a three-point filter (1/4, 1/2, 1/4).

Shown in Fig. 13 are typical time series of the LEG (upper) and marginal entropy rates (lower). One
sees that the former is smooth in general, while the latter has different kinds of time oscillations. As in
this example, usually LEG accounts for the evolutionary trend of marginal entropy rate. This to some
extent echoes our previous assertion about the intrinsicity of LEG.

5.3. LEG estimation with small ensembles

From the above analysis, it seems that the LEG of a system may  be well estimated with an ensemble
of rather limited size. To test this hypothesis, we  generate an ensemble for the current prediction with
only 5 × 5 × 5 = 125 members. Just as expected, the resulting LEG is essential the same as that in Fig. 12
(not shown).

For practical reason, one is temptated to make more drastic reduction of the ensemble size and
see what will happen with the LEG distribution. For this present prediction, we  retain 5 draws for
the first EOF mode, but make only 2 draws each for the remaining two. The resulting ensemble has
only 5 × 2 × 2 = 20 members, much less than 5 × 5 × 5 = 125, i.e., the minimum size requirement. The
computed result is shown in Fig. 14.  As one may  see, it agrees well with Fig. 12.  Both have values
maximized toward the lateral boundaries, and peaks/valleys tilt toward the west. The tilting slopes
are essentially the same, and they propagate eastward at the same celerity. If there are anything
different, the rate estimated here is slightly larger than that in Fig. 12,  and some details superimposed
on the large-scale structures may  differ. Nevertheless, the similarity is striking, considering that the
ensemble we are using is so small.

6. Uncertainty generation with the axially trapped perturbation run

6.1. Ensemble formation

Quite different from what we see in the previous section, the attractor from the axially trapped run
appears very chaotic (Fig. 9). However, as for many GFD problems, it is actually of low dimensionality.
Following the same procedure as in the preceding section, start from the state in Fig. 9 and integrate
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Fig. 14. Same as Fig. 12, but the estimation is with an ensemble of only 20 members.

the system for 10,000 steps (5 time units), with results being output every 2 steps. The obtained dataset
is then EOF analyzed. From the result, over 90% of the variance from its initial field is covered within
the first 5 EOF modes (cf. Fig. 15), among which the first accounts for 60%. We  use these 5 modes to
generate the ensemble of initial conditions.

As before, assume that the time coefficients corresponding to the 5 EOF modes are Gaussian, with
means and variances computed from their respective time series P1, P2, and so forth. By computation
the probability distributions are:

• P1: N(− 2.01 × 10−2, 7.7852 × 10−5),
• P2: N(− 2.29 × 10−4, 8.43 × 10−5),
• P3: N(2.60 × 10−3, 6.57 × 10−5),
• P4: N(8.16 × 10−5, 5.00 × −5),
• P5: N(5.79 × 10−5, 3.60 × 10−5).

Make 5 draws for each component and we obtain an ensemble with 55 = 3125 members. Kleeman
(2007) argued that 5 draws for each component suffice; this is also true here, we  have doubled the
ensemble size and obtained essentially the same result.

6.2. Uncertainty generation

Compared to the globally perturbed run in the previous section, the time scale in this case is much
shorter. Generally speaking, a prediction of 500 steps (t = 0.25) or less is enough for one to identify
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Fig. 15. The first three EOF modes (from top to bottom) for the run with axially trapped perturbation. The y direction has been
enlarged for visual inspection.

the uncertainty generation patterns. A few of the 3125 members in the ensemble of initial conditions
blow up the integration at 400 steps or so. These members are ruled out in estimating the uncertainty
generation and, just in case of any numerical pollution, only examine the series up to 400 time steps.

Fig. 16 gives a snapshot of the computed LEG. We  see from it that the rate is much larger than that
in Fig. 12.  That is to say, this run is much more uncertain than the previous globally perturbed run.
This is within our expectation, as one may  judge with naked eyes by comparing the attractors in Figs. 9
and 6. Another prominent feature is that it has a distribution with two  clusters along the axis. Notice
that dH∗

k
/dt may  be both positive and negative, indicating that the two centers are intrinsically both

sources and sinks of uncertainty.
We also make a rough estimate of dHk/dt  to examine how LEG makes its part in the marginal

entropy rate. The procedure is the same as that in the previous section. Fig. 17 are two such series
at point (25,26) in the middle of the domain at the axis, or (4.9,0) in physical coordinates. The local

Fig. 16. The LEG at step 200 for the axially trapped perturbation run. The y direction has been enlarged for visual inspection;
in  the unshown region the LEG is negligible.



70 X.S. Liang / Dynamics of Atmospheres and Oceans 52 (2011) 51– 79

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
−0.2

0

0.2

0.4

0.6
LEG at (4.898,0)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
−2

−1

0

1

2
Marginal entropy rate at (4.898,0)

Fig. 17. Time series of the LEG and marginal entropy rate at point (25,26) for the axially trapped perturbation run. Also plotted
in  lower panel is a line showing the linear trend.

uncertainty generation dH∗
k
/dt (LEG) is almost like a straight line, while others exhibit oscillations.

Again, here dH∗
k
/dt to a large extent explains the trend (see the fitted line in the middle subplot) of the

marginal entropy rate; accordingly the time oscillation should be accounted for by the CIT. Of course,
here we are not attempting to reach any conclusion, as the estimations of dHk/dt  and hence the CIT
cannot be made accurate. More work is needed but we  leave that to future studies.

6.3. LEG estimation with small ensembles

As before, it is temptating to reduce the ensemble size and see how the LEG estimate may  vary. First
consider only four EOF modes and form an ensemble of 54 = 625 members. The result is essentially the
same as Fig. 16.  Further remove one EOF mode and retain only two draws each for modes 2 and 3, and
form an ensemble with only 5 × 2 × 2 = 20 members. The so-estimated LEG is shown in Fig. 18.  As one
may see, the basic structures in Fig. 16,  such as the positioning of the positive/negative centers, have
been reproduced here. The differences are, firstly, that the estimated rate here is slightly larger, and,
secondly, that some features appear between the two  clusters. But as a whole, the LEG has been fairly
satisfactorily reproduced, even though the ensemble used is of such a small size.

7. LEG estimation without ensemble prediction

The successful LEG estimation with small ensembles motivates one to ask: is it possible to esti-
mate LEG without doing ensemble prediction? This is a very temptating question; if it is true, the
computational burden would be completely relieved in the study of uncertainty generation.

Fig. 18. Same as Fig. 16,  but the LEG is estimated using an ensemble with only 20 members.
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Fig. 19. Same as Fig. 16,  but the LEG is estimated with a time average over 125 time steps centered around step 200.

In the above computations, we approximate the mathematical expectation in the LEG formula (7)
with an ensemble mean. If the involved processes are ergodic and stationary, the ensemble mean can
be replaced by a time average, and hence one may  argue that the above assertion could indeed be true
in this case. We  put it to test with the standard prediction of the axially trapped run, which looks like
quasi-stationary and quasi-ergodic. We  have tried the time averages of ∂Fk/∂uk with a time length of
125–401 steps. (We  pick odd number steps to ensure a symmetry around the center point.) The results
are essentially the same. Shown below in Fig. 19 is such an estimate with a time average over 125 steps
centered around step 200. Compared to Fig. 16,  the two  clusters are evident, and the positive/negative
centers are correctly located. Although the values may  be slightly smaller, and the geometric shapes
of the positive/negative centers may  be a little different, as a whole the similarity between Figs. 19
and 16 is remarkable. Besides, we have also tried a 21-step averaging and a 3001-step averaging. The
results, however, are not satisfactory. The 21-step one apparently has too short a time span to include
all the major processes; the other one is too long and some longer variation appears, making the series
no long stationary. A reasonable time span should be long enough to include all the processes, and
short enough to ensure the stationary assumption to hold. In real applications, this may  be set based
on experience and physical intuition.

Of course, one cannot expect that real problems all have ergodic and stationary processes. For
generic cases, we argue that the above strategy may  still be worthwhile to try. In (7),  the mathematical
expectation acts, to some extent, a role like filtering, both in space and time. To test this conjecture,
consider the globally perturbed run. For a time step, say 5000, we choose a series of ∂Fk/∂uk centered
around it with a time span of 2jmax = 1024 (jmax = 10) steps, and reconstruct it with an orthonormalized
cubic-spline basis of scale level j0 = 5 (see Liang and Anderson, 2007). The reconstruction is further
filtered in space with a 2D orthonormalized cubic-spline basis (Liang and Anderson, 2007) to remove
the 2-point features. Contoured in Fig. 20 is the result. Generally speaking, it looks similar to Fig. 12.
The tilting structure is well reconstructed. Most of the positive and negative centers are at the right
positions. Although improvements are still to be made, this is remarkable now, as we  have gained a
qualitatively satisfactory understanding of local uncertainty generation without even doing ensemble
prediction!

Fig. 20. The LEG for the globally perturbed run at step 5000 estimated with a time filter followed by a spatial filter.
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8. Discussion and conclusions

We have studied the uncertainty generation within deterministic fluid flows, with preliminary
applications to a barotropic quasi-geostrophic (QG) jet stream. For each location, say k, uncertainty
arises along with the random distribution of some state variable, say u = (u1, . . .,  un), at the location;
it is measured by the marginal entropy of uk, or Hk as used in the text. The problem of uncertainty
generation is thus about the time change of Hk, which is due to the entropy production local at k,
and the information transfer (or information flow as may  be referred to in the literature) from other
locations. The former is referred to as local entropy generation, or LEG for short; the latter is a cumulant
effect from all locations other than k, and is hence termed cumulant information transfer (CIT). We
thus have, in short,

Marginal entropy change = local entropy generation (LEG) + cumulant information transfer (CIT).

Given a dynamical system

du
dt

= F(u, t), u = (u1, u2, . . . , un),

the LEG at k, dH∗
k
/dt, proves to be

dH∗
k

dt
= E

(
∂Fk
∂uk

)
, k = 1, 2, . . . , n,

where E is the mathematical expectation with respect to all the components of u. This information-
theoretic law is a rigorous mathematical result (refer to Appendix A for a detailed proof). The
corresponding CIT can be computed, in principle, by subtracting the LEG from the marginal entropy
rate.

To atmosphere and ocean models (including the governing equation, discretizing scheme, etc.) LEG
is a “static” and intrinsic property, showing their potentials to generate uncertainties. Physically it is the
mean of localized Lyapunov exponents, bringing connection between the two physical notions namely
instability and uncertainty. For linear systems, LEG is independent of states, and can be computed
analytically. In contrast, CIT arises in the course of state evolution; it is a result of the interaction
between different locations through dynamic event synchronization.

A major challenge in the study of atmospheric/oceanic uncertainty generation is the evaluation
of entropy-related quantities. Ensembles of enough size are in general computationally intractable
with the computing capabilities so far. This study, however, shows that LEG can be accurately com-
puted from the concise formula (7) with ensembles of very limited size. Furthermore, if the process
of concern is ergodic and stationary, the ensemble mean in (7) actually can be well approximated
with a time average. That is to say, in this case, the LEG can be estimated with a single realization.
In more generic cases, though ergodicity and stationarity may  not hold, we have shown that the LEG
may still be evaluated to one’s satisfaction with temporal and spatial filters. In other words, one may
study local uncertainty generation without even doing ensemble prediction! This is remarkable as real
atmospheric and oceanic systems are usually of huge dimensionality and hence ensemble predictions
are expensive.

The above theory and hypotheses have been illustrated and tested with a QG barotropic atmo-
spheric jet stream. Two predictions have been used, each with a compact low-dimensional attractor
to ensure an ensemble prediction with a feasible but large enough ensemble. The first is a two-
wavenumber wave superimposed by chaotic small-scale features. Its LEG also exhibits a wave form
with the same phase celerity, but with a structure quite different from the attractor. Spatially it is inten-
sified toward the lateral boundaries, and is dominated by a pattern tilting toward the west. Another
prediction has a very chaotic attractor, which is trapped along the zonal axis. Its LEG is significant only
within two clusters. Time series analysis shows that the LEG evolves smoothly, and more often than
not it gives the trend of the uncertainty evolution. In both cases, their LEG rates have been satisfactorily
estimated without doing ensemble prediction.
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The physical importance and computational tractability make LEG a good measure to assess model
performance in terms of uncertainty generation. In doing this, one should bear in mind that LEG
includes inputs from both physics and numerics. That is to say, different discretizations may  result in
different LEG distributions, as one may  check with the expression in Appendix B. Separation of these
two sources should be straightforward, but it is not our intention to do it here; we intend to perform
such a separation in a real ocean application with a sophisticated ocean prediction system, and present
it in a forthcoming paper.

It should be noted that, in this study, we did not pay attention to the CIT namely the cumulant
information transfer. Information transfer/flow is a very important mechanism to produce uncertain-
ties within a system, but here what is considered is just the cumulant effect. That is to say, given
a location k, what we obtain is just the effect to k from all other locations, without knowing where
the effect is from. Clearly, differentiation of the cumulant transfer is important, as it helps to iden-
tify the causal relation between different locations. In this regard, a pioneering study was conducted
by Kleeman (2007),  using the empirical formalism available in his days. Since then, a rigorous for-
malism has been established and explicit formulas derived for both deterministic systems (Liang and
Kleeman, 2007b)  and stochastic systems (Liang, 2008), and has been applied to some low-dimensional
dynamical systems. Applications to large dimensional systems like the atmosphere and oceans, how-
ever, encountered problems because of the involvement of joint probability density function in the
formulas, whose evaluation is notoriously difficult. We  expect more progress in this field in the near
future.
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Appendix A. Proof of Theorem 1

Proof. By definition dH∗
k
/dt means the time rate of change of the marginal entropy of uk at time t

with effects from all other components of u excluded, i.e., with all other components instantaneously
frozen as parameters at t. Without loss of generality, let k = 1. If not, one can always re-arrange the
indices of u = (u1, u2, . . .,  un) to make it so. Discretization of Eq. (1) on the interval [t, t + 	t] results in
a mapping

� : R
n → R

n, u(t) �→ u(t + 	t)  = u(t) + F(u(t), t)	t.

To avoid confusion, denote u(t + 	t)  by v, and suppress the time dependence for clarity. The mapping
is then

v1 = u1 + F1(u)	t,
v2 = u2 + F2(u)	t,
...

...
vn = un + Fn(u)	t.

Correspondingly there is a Frobenius–Perron operator (F–P operator henceforth)

P :  L1(Rn) → L1(Rn), �(u) �→ P�(u),

which is defined to be, in a loose sense,∫
ω

P�(u)du =
∫
�−1(ω)

�(u)du, for all ω ⊂ R
n.
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When the mapping � is nonsingular and invertible, P can be explicitly evaluated (cf. Lasota and
Mackay, 1994):

P�(u) = �
[
�−1(u)

] ∣∣J−1
∣∣ , (A.1)

where

J = det

[
∂(v1, v2, . . . , vn)
∂(u1, u2, . . . , un)

]

is the Jacobian determinant of �.  For our problem, when 	t → 0, � is nonsingular and always invert-
ible. In fact, the inversion is �−1 : R

n → R
n, v �→ u:

u1 = v1 − F1(v)	t + O(	t2),
u2 = v2 − F2(v)	t + O(	t2),
...

...
un = vn − Fn(v)	t + O(	t2).

Now let all the components of u except u1 be frozen as parameters at t. The system thus modified

evolves from t to t + 	t, resulting a mapping:

v1 = u1 + F1(u1, û2, . . . , ûn)	t,

where a hat signifies that the variable is frozen at t, and (for all i) indicates that the effect of ui is

excluded. Let 	t  → 0, again is invertible and is:

u1 = v1 − F1(v1, û2, . . . , ûn)	t  + O(	t2).

The Jacobian of is

(A.2)

So the corresponding F–P operator

(A.3)

For simplicity, all the variables with no arguments explicitly written are understood as functions of
(v1, û2, û3, . . . , ûn).

By the definition of Shannon entropy, is the expectation of the function

. That is to say, it is equal to the integration of f times some pdf over the

corresponding sample space. The first density to be multiplied is , but f also depends
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on the frozen components, namely û2, û3, and so forth. So we  need also multiply some joint density of
(û2, û3, . . .,  ûn). Here one should be cautioned that the freezing is performed on [t, t + 	t], given u1 at t.
So the joint density is actually a conditional density on u1 at t. Based on these arguments, the entropy
of u1 at t + 	t,  with u2, u3, . . .un frozen as parameters since t, is:

(A.4)

In (A.4), one thing that should be noted is the involvement of u1 in �(û2, û3, . . .,  ûn | u1) while the
integration is with respect to v1. We  must convert u1 to v1. Recall that they are related through the

mapping , i.e.,

u1 = v1 − F1	t  + O(	t2).

We hence have

�(û2, . . . , ûn|u1) = �(u1, û2, . . . , ûn)
�1(u1)

= �(v1, û2, . . . , ûn) − (∂�/∂v1)F1	t

�1(v1) − (∂�1/∂v1)F1	t
+ O(	t2)

= 1
�1(v1)

[
�(v1, û2, . . . , ûn) − ∂�

∂v1
F1	t

] [
1 + 1

�1

∂�1

∂v1
F1	t

]
+ O(	t2)

= 1
�1(v1)

[
� − ∂�

∂v1
F1	t  + �

�1

∂�1

∂v1
F1	t

]
+ O(	t2),

where, again, all dependent variables without arguments are in (v1, û2, . . . , ûn).
For the remaining parts in (A.4), by Eq. (A.3) we  have
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where for notational simplicity, we have also omitted the argument v1 in �1. So

The first term in the bracket integrates to zero as the pdf vanishes on the boundaries of the sample
space. Changing the variables (v1, û2, . . . , ûn) back to (u1, u2, . . .,  un), the above integration results in

(A.5)

Therefore,

�

Appendix B. Differentiation of the vector field for the vorticity equation

For easy reference, rewrite the vorticity equation here as:

L∂ 
∂t

= −∂ 
∂x

∂L 
∂y

+ ∂ 

∂y

∂L 
∂x

− U
∂L 
∂x

+ Uyy
∂ 

∂x
. (B.1)

Discretizing with central differences, we get

L i,j
∂t

= − i+1,j −  i−1,j

2	x
× (L )i,j+1 − (L )i,j−1

2	y
+  i,j+1 −  i,j−1

2	y
× (L )i+1,j − (L )i−1,j

2	x

− Uj ×
(L )i+1,j − (L )i−1,j

2	x
+ Uyy,j ×

 i+1,j −  i−1,j

2	x
, (B.2)

where

(L )i,j ≡  i+1,j − 2 i,j +  i−1,j

	x2
+  i,j+1 − 2 i,j +  i,j−1

	y2
, (B.3)

for all indices i and j. Clearly, each interior point is related to 12 points in its neighborhood, as shown in
Fig. B.1 around point (i, j). The 2D indices are arranged into a vector form through a mapping (i, j) �→ k
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Fig. B.1. Mesh grid.

such that k = k(i, j) = (j − 1) × im + i. Let F
 be the vector field of the vorticity equation (i.e., the equation
for L ), and F
,k(i,j) be its k th component, then

∂F
,k(i,j)
∂ k(i,j)

= ∂F
,k(i,j)
∂ i,j

= 0;

∂F
,k(i,j)
∂ k(i+1,j)

= ∂F
,k(i,j)
∂ i+1,j

= − 1
2	x

(
L 
∂y

)
i,j

−
(
∂ 

∂x

)
i,j

× 1
2

((
− 1

	x2

)
/	y  +

(
1

	x2

)
/	y

)

+
(
∂ 

∂y

)
i,j

×
− 2

	x2
− 2

	y2

2	x
− Uj ×

− 2

	x2
− 2

	y2

2	x
+ Uyy,j ×

1
2	x

= 1
2	x

[
Uyy,j −

(
∂L 
∂y

)
i,j

]
+

1

	x2
+ 1

	y2

	x

[
Uj −

(
∂ 

∂y

)
i,j

]
,

where the following shorthands(
∂ 

∂x

)
i,j

≡  i+1,j −  i−1,j

2	x
,

(
∂ 

∂y

)
i,j

≡  i,j+1 −  i,j−1

2	y
,

have been used and will be used throughout. Continuing the derivation,

∂F
,k(i,j)
∂ k(i+2,j)

= ∂F
,k(i,j)
∂ i+2,j

=
(
∂ 

∂y

)
i,j

· 1

2	x3
− Uj ·

1

2	x3
= 1

2	x3

[(
∂ 

∂y

)
i,j

− Uj

]
;

∂F
,k(i,j)
∂ k(i−1,j)

= ∂F
,k(i,j)
∂ i−1,j

= 1
2	x

(
∂L 
∂y

)
i,j

−
(
∂ 

∂x

)
i,j

1
2

(
− 1

	x2	y
+ 1

	x2	y

)

+
(
∂ 

∂y

)
i,j

2

	x2
+ 2

	y2

2	x
− Uj

2

	x2
+ 2

	y2

2	x
+ Uyy,j

−1
2	x

= 1
2	x

[(
∂L 
∂y

)
i,j

− Uyy,j

]

+

1

	x2
+ 1

	y2

	x

[(
∂ 

∂y

)
i,j

− Uj

]
;
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∂F
,k(i,j)
∂ k(i−2,j)

= ∂F
,k(i,j)
∂ i−2,j

=
[
Uj −

(
∂ 

∂y

)
i,j

]
1

2	x3
;

∂F
,k(i,j)
∂ k(i,j+1)

= ∂F
,k(i,j)
∂ i,j+1

= −
(
∂ 

∂x

)
i,j

× 1
2

⎧⎪⎨
⎪⎩

− 2

	x2
− 3

	y2

	y
+ 1

	y3

⎫⎪⎬
⎪⎭ +

(
∂L 
∂x

)
i,j

1
2	y

=
(
∂ 

∂x

)
i,j

×

⎧⎪⎨
⎪⎩

1

	x2
+ 1

	y2

	y

⎫⎪⎬
⎪⎭ + 1

2	y

(
∂L 
∂x

)
i,j

;

∂F
,k(i,j)
∂ k(i,j+2)

= ∂F
,k(i,j)
∂ i,j+2

= −
(
∂ 

∂x

)
i,j

1

2	y3
;

∂F
,k(i,j)
∂ k(i,j−1)

= ∂F
,k(i,j)
∂ i,j−1

= −
(
∂ 

∂x

)
i,j

× 1
2

⎧⎪⎨
⎪⎩− 1

	y3
+

3

	y2
+ 2

	x2

	y

⎫⎪⎬
⎪⎭ − 1

2	y

(
∂L 
∂x

)
i,j

=
(
∂ 

∂x

)
i,j

{
− 1
	y

(
1

	y2
+ 1

	x2

)}
− 1

2	y

(
∂L 
∂x

)
i,j

;

∂F
,k(i,j)
∂ k(i,j−2)

= ∂F
,k(i,j)
∂ i,j−2

= 1

2	y3

(
∂ 

∂x

)
i,j

;

∂F
,k(i,j)
∂ k(i+1,j−1)

= ∂F
,k(i,j)
∂ i+1,j−1

=
(
∂ 

∂x

)
i,j

1

2	y	x2
+

(
∂ 

∂y

)
i,j

1

2	x	y2
− Uj

1

2	x	y2
;

∂F
,k(i,j)
∂ k(i+1,j+1)

= ∂F
,k(i,j)
∂ i+1,j+1

= −
(
∂ 

∂x

)
i,j

1

2	x2	y
+

(
∂ 

∂y

)
i,j

1

2	x	y2
− Uj

1

2	x	y2
;

∂F
,k(i,j)
∂ k(i−1,j−1)

= ∂F
,k(i,j)
∂ i−1,j−1

=
(
∂ 

∂x

)
i,j

1

2	x2	y
−

(
∂ 

∂y

)
i,j

1

2	x	y2
+ Uj

1

2	x	y2
;

∂F
,k(i,j)
∂ k(i−1,j+1)

= ∂F
,k(i,j)
∂ i−1,j+1

= −
(
∂ 

∂x

)
i,j

1

2	x2	y
−

(
∂ 

∂y

)
i,j

1

2	x	y2
+ Uj

1

2	x	y2
.

These form the k(i, j) th row of the matrix DF
; all other entries at the same row are zero.
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