
Vol.:(0123456789)1 3

Climate Dynamics 
https://doi.org/10.1007/s00382-020-05584-w

Relative contributions of global warming, AMO and IPO to the land 
precipitation variabilities since 1930s

Li Tao1,2  · X. San Liang1,3 · Lin Cai1 · Jiuwei Zhao4 · Meng Zhang1

Received: 27 May 2020 / Accepted: 11 December 2020 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
The relative contributions of ocean modes to the JJA and DJF land precipitation variabilities during 1934–2015 are inves-
tigated using a variety of statistical and dynamical system methods, i.e., singular value decomposition (SVD), multivariate 
linear regression, and information flow analysis. Through SVD analysis for the tropical land precipitation and sea surface 
temperature (SST), three ocean modes are found to most affect the trend and interdecadal variation of the land precipitation. 
They are the global warming (GW) mode, Atlantic Multidecadal Oscillation (AMO) and Interdecadal Pacific Oscillation 
(IPO). GW contributes dominantly to the tropical land rainfall variability in both the JJA and DJF seasons. In JJA (DJF), 
AMO (IPO) plays a role only secondary to GW. Locally, within the thin latitude bands 10° S–10° N, 50° N–60° N and 40° 
S–50° S, GW, AMO and IPO are of equal importance in JJA; outside these bands, in the same season the first two dominate. 
In the band 10° N–40° N, IPO is the primary contributor in DJF, but outside it, GW dominates. Also, these contributions 
differ geographically from continent to continent. These results have been substantiated in the application of information 
flow analysis, a recently developed method in physics for the inference of causality between dynamical events. In terms of 
information flow, we have presented the regions of sensitivity to the three modes. Also presented are a number of ECHAM 
model experiments, which, besides verifying the above results, show for the first time that the Indian Ocean is pivotal in 
having AMO and IPO in effect in causing the precipitation variabilities.

Keywords Land precipitation · Global warming · Atlantic multidecadal oscillation · Interdecadal pacific oscillation · 
relative contribution

1 Introduction

In a background of global warming (GW), future precipi-
tation variations are expected to follow a ‘rich get richer’ 
pattern because of the effect of moisture changes in the 
atmosphere (Chou and Neelin 2004; Held and Soden 2006; 
John et al. 2009). However, Greve et al. (2014) used more 
than 300 combinations of hydrological datasets during 
1948–2005 to investigate the wetting and drying trends in 
different regions, and found that only 10.8% of the global 
land areas were in a robust ‘wet gets wetter, dry gets drier 
pattern’. The coupled model simulations also have revealed 
a precipitation scenario different from the wet-get-wetter 
pattern (Xie et al. 2010). Besides these, it has also shown 
that precipitation trends are more geographically dependent; 
for example, increase near the equator, decrease in the sub-
tropical subsidence regions, and a smaller but more consist-
ent increase in mid-latitudes have been observed (e.g. Allen 
and Ingram 2002; Zhang et al. 2007; Gu and Adler 2015). 
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Many studies attributed the above precipitation variabilities 
to the increasing concentrations of  CO2 and other green-
house gases (GHGs) in the atmosphere (e.g. Dai et al. 1997; 
Allen and Ingram 2002; Emori and Brown 2005).

Besides this, the role of sea surface temperature (SST) 
on precipitation variabilities has been emphasized in many 
studies. Particularly, the change observed in some regional 
precipitation seems to result from a combined influence of 
the global warming and oceanic decadal variability (e.g. 
Mohino et al. 2011; Gu and Adler 2013; Gu and Adler 2015; 
Dong and Dai 2015; McCabe et al. 2004; Xie et al. 2010). 
For example, the positive (negative) phase of the Atlantic 
Multi-Decadal Oscillation (AMO; Kerr 2007; Kushnir 1994; 
Schlesinger and Ramankutty 1994) is believed to enhance 
(suppress) the precipitation over Sahel, and suppress 
(enhance) that over Guinea Gulf (Folland et al. 1986; Knight 
et al. 2006; Zhang and Delworth 2006; Mohino et al. 2011); 
the positive AMO phase also contributes to the drought over 
northeast Brazil during the boreal winter, and the wetting 
over central America during the boreal summer (Zhang and 
Delworth 2006; McCabe et al. 2004) suggested that about 
70% of the temporal variability in drought frequency over 
the continental U.S. during 1900–1999 could be explained 
by PDO, AMO, and the North Hemisphere temperature. The 
correlation between AMO and drought frequency reveals a 
consistent positive pattern over the central U.S.

The Interdecadal Pacific Oscillation (IPO; Mantua et al. 
1997; Zhang et al. 1997; Deser et al. 2004; Salinger et al. 
2001; Power et al. 1999) is another mode of oceanic decadal 
variability which affects land precipitation in many regions. 
Gu and Adler (2013) suggested that the observed linear 
change in global mean precipitation during 1988–2010 
might be accounted for jointly by the global mean surface 
warming and Pacific decadal Oscillation (PDO)—hence 
IPO. They (Gu and Adler 2015) also suggested that PDO/
IPO and AMO both play important roles in the precipitation 
variations in the middle and high latitudes of the Northern 
Hemisphere. Positive correlations exist between the IPO 
index and the regional precipitations over Southwest U.S., 
Argentina, and parts of Europe and Asia, whereas negative 
correlations are found over southern and western Africa, 
eastern Australia, southeastern and northeastern Asia (Dong 
and Dai 2015; Dai 2013). It was also reported (Yang et al. 
2017) that IPO plays a dominant role in the interdecadal 
variation of the north-south precipitation anomaly dipole 
over eastern China, and that the dipole pattern is enhanced 
when the IPO and AMO are in opposite phases.

Though the SST-driven variability of precipitation is the 
subject of numerous studies, the relative contributions of 
GW, AMO, and IPO have not yet been quantified directly 
from observation. To our best knowledge, such quanti-
fication has only been exercised through numerical mod-
eling. However, the limitations of models in reproducing 

precipitation variabilities are well known. In this study, 
instead, we approach the problem directly from the reanaly-
sis data. Specifically, we will identify the dominant modes 
affecting on the trend/decadal variation of land precipitation 
in different seasons, and quantitatively assess their relative 
contributions using a variety of methods. Particularly, we 
will employ a recently developed causal inference method, 
i.e., the information flow analysis developed by Liang (2014) 
to unravel the cause-effect relation between time series, to 
identify the regions where GW, AMO or IPO can signifi-
cantly affect. These identifications/inferences are then veri-
fied in numerical experiments with the atmospheric general 
circulation model ECHAM 4.6. As we will see, besides the 
verification, the numerical experiments reveal to us that 
Indian Ocean is pivotal in that it cooperates with the Pacific 
and Atlantic to influence the land precipitation variability.

The remainder of the paper is organized as follows. 
Below we first describe the data and methods. In Sect. 3.1, 
SST modes are identified that contribute to the trend/decadal 
variabilities of the land precipitation. Their relative contribu-
tions are then assessed. As a verification, in Sect. 3.5 numer-
ical experiments are conducted and results are presented. A 
summary is given in Sect. 4.

2  Data and methods

2.1  Data

The monthly land precipitation dataset used in this study 
is obtained from the Climate Research Unit Time Series 
(CRU TS 2.1). The dataset has a horizontal resolution of 
0.5° × 0.5° and is available from 1901 (Harris et al. 2014). 
Because the data over some regions (e.g. northern Africa) 
are set to climatology monthly means before 1933, the analy-
sis period of this study is set from 1934 to 2015 to ensure the 
data reliability. Another monthly land precipitation dataset 
from Global Precipitation Climatology Centre (GPCC) Full 
Data Reanalysis V2018 are also used to verify the results 
(Schneider et al. 2014). It has a horizontal resolution of 
1° × 1° for the period of 1934–2015, based on the quality-
controlled data from 67,200 stations world-wide that feature 
record durations of 10 years or longer.

The SST dataset is from the monthly Hadley Center sea 
ice and SST dataset (HadISST; Rayner et al. 2011). Another 
SST dataset from Extended Reconstructed Sea Surface Tem-
perature v3 (ERSSTv3; Smith et al. 2008) is also used to 
verify the results. HadISST is primarily based on observa-
tions from the UK Met Office, whereas ERSSTv3 is based on 
the International Comprehensive Ocean–Atmosphere Data 
Set (ICOADS) SST anomalies. Both have a global coverage 
but with different horizontal resolutions (1° × 1° for Had-
ISST and 2° × 2° for ERSSTv3).
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The monthly National Centers for Environmental Pre-
diction (NCEP)–National Center for Atmospheric Research 
(NCAR) atmospheric reanalysis dataset (Kalnay et al. 1996) 
are also used as observations for the purpose of model 
valiation.

As we will see soon, the ocean modes that dominate the 
precipitation variabilities are GW, AMO, and IPO. We need 

the time series of their indices for the purpose of this study. 
The GW time series is derived from the yearly global SST 
averaged between the latitude 45° S and 60° N (Mohino 
et al. 2011), which is a good approximation for the observed 
warming signal in global ocean; it is shown in Figs. 1c and 
2c. The area beyond the band is excluded because of the 
poor SST data coverage (Baines and Folland 2007). As the 

(a)
(c)

(b)

(f)
(d)

(e)

(g)
(i)

(h)

Fig. 1  The first three SVD modes between the SST (20° S–45° N) 
from HadISST and the tropical land precipitation from CRU during 
the JJA seasons of 1934–2015. (a, d, g) are the first three spatial pat-
terns of SST; (b, e, h) are those of land precipitation. The normalized 
SVD time series of SST (blue lines) and precipitation (red lines) are 

shown in (c, f, i). The black lines in (c, f, i) are for GW, AMO and 
IPO. The correlation coefficients (r) with * are statistically significant 
at the 5% level, and those with ** are statistically significant at the 
1% level
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so-obtained series may be contaminated by decadal/inter-
decadal oscillations, we further apply the ensemble empiri-
cal mode decomposition (EEMD) (Wu and Huang 2009) to 
remove the decadal/multi-decadal variability, and keep the 
noticeable non-linear upward trend as the GW index; see 
Fig. 3. [EEMD is an adaptive time-space analysis method 
suitable for processing series that are non-stationary and 
non-linear and separate scales naturally without any a priori 
subjective criterion selection as in the intermittence test for 
the original EMD algorithm (Wu and Huang 2009)].

The AMO and IPO monthly time series are provided 
by NOAA Earth System Research Laboratory’s Physical 
Sciences Division (PSD) (https ://www.esrl.noaa.gov/psd/
data/clima teind ices/list/). The AMO series is estimated as 
the detrended-area-weighted SST averaged over the North 
Atlantic (0–70° N). The IPO time series is taken as the 
difference between the SST anomalies (SSTA) averaged 
over the central equatorial Pacific and that averaged over 
the Northwest and Southwest Pacific.

(a)
(c)

(b)

(d)
(f)

(e)

(g)
(i)

(h)

Fig. 2  Same as Fig. 1, but for the precipitation from CRU in DJF. The variances of the first three SVD modes are 42.7%, 28.3%, 9.7%, respec-
tively

https://www.esrl.noaa.gov/psd/data/climateindices/list/
https://www.esrl.noaa.gov/psd/data/climateindices/list/
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2.2  Methods

2.2.1  Singular value decomposition

The singular value decomposition (SVD) analysis (Brether-
ton et al. 1992) is used to identify the dominant precipitation 
patterns and their coupling to the SST. The tropical land 
rainfall over (30° S–30° N) is taken as the left field and the 
SST over (20° S–45° N) as the right field. The reason for 
choosing the precipitation over tropical region rather than 
that over global region is that the variance contributions of 
dominant ocean modes differ from region to region; we can’t 
extract the dominant ocean modes if we use the global pre-
cipitation. For example, we have applied SVD analysis to the 
dataset of precipitation over the North America and the SST 
dataset over (20° S–45° N). The resulting dominant ocean 
modes are AMO in JJA and IPO in DJF. When precipitation 
data is changed to that over East Asia, the first dominant 
mode becomes GW, rather than AMO or IPO. Anyway, the 
dominant ocean modes are no more than GW, AMO and 
IPO. For the above reason and due to the large land area over 
tropics, the tropical land rainfall over (30° S–30° N) is used 
as left field for the SVD analysis.

2.2.2  Multivariate linear regression

Multivariate linear regression method (Grömping 2006) is 
applied to evaluate the relative contributions of GW, AMO and 
IPO to the global land precipitation variation. We regress the 
annual mean precipitation onto GW, AMO and IPO indices. 
By Table 1, the GW, AMO and IPO indices can be considered 

as independent variables—The degrees of freedom determined 
by the autocorrelation (Dawdy and Matalas 2020) and cor-
relation coefficients between them suggests that they are sta-
tistically insignificant by the Student’s t test. The multivariate 
linear regression model is given as:

 where i signifies time step, β0, β1 and β2 are regression coef-
ficients,  eiis the residual part which cannot be explained by 
the model, which here we assume to follow a Gaussian dis-
tribution around zero. The proportion that can be explained 
by the three indices is calculated as:

 where,

In Eqs. (1) and (2), the overbar denotes the climatological 
mean value, and the caret denotes the value estimated from the 
linear regression model. Suppose Q is the residual variance of 
 ei in Eq. (1) which cannot be explained by GW, AMO and IPO. 
Then we can get a new multivariate regression formulation and 
new residual variance Q′

GW
 if we take away one independent 

variable, for example GW. Obviously, the less the independent 
variable considered, the larger the residual variance becomes. 
We then obtain the variance contribution from GW:

Likewise, the contributions from AMO and IPO are also 
obtained:

(1)PREi = �0 + �1GWi + �2 ⋅ AMOi + �3 ⋅ IPOi + ei

(2)R2 =
Model_Var

Total_Var
=

∑t

i=1
(P̂REi − PRE)

2

∑t

i=1
(PREi − PRE)

2

(3)P̂REi = �̂0 + �̂1 ⋅ GWi + �̂2 ⋅ AMOi + �̂3 ⋅ IPOi

(4)QGW = Q�

GW
− Q.

(5)QAMO = Q�

AMO
− Q

Fig. 3  Time series of the 9-year 
low-passed AMO (blue line), 
IPO (black line) and GW (red 
line) indices from 1394–2015. 
EEMD has been applied to the 
domain averaged SST over (45° 
S–60° N); the trend is used as 
the GW index

Table 1  Correlation coefficients 
between GW, AMO, and IPO

GW AMO IPO

GW 1 0.13 0.07
AMO 0.13 1 − 0.18
IPO 0.07 − 0.18 1
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We hence can calculate the proportion of variance explained 
by GW, AMO and IPO, using the following formulas:

2.2.3  Information flow

Usually, we use time-lagged correlation analysis to identify the 
causality between two time series. However, it is well known 
that correlation does not carry the needed directedness or 
asymmetry and hence does not necessarily imply causality. 
During the past decade, it has been realized that causality is 
inherently rooted in information flow, a real physical notion 
which can be rigorously formulated from first principles 
(Liang 2016). This formalism has been well validated with 
benchmark dynamical system problems. Moreover, under 
some assumptions, its maximum likelihood estimator is shown 
to be very concise in form (Liang 2014). This formula has been 
applied successfully to the investigation of many real-world 
problems in a variety of disciplines such as neuroscience, 
finance, atmosphere-ocean science, etc. In climate science, it 
has been used to reveal to us a mutual causal relation between 
El Nino and Indian Ocean Dipole (Liang 2014), a clear one-
way causality between  CO2 and the global temperature (Stips 
et al. 2016), so on so forth. In this study, we adopt it to cross-
validate the results with the above methods.

Consider a two-dimensional dynamical system (with com-
ponents standing for the time series to be studied):

 where W1 and W2 are white noises, F1 , F2 are differentiable 
functions of their variables, Liang (2014) proved that the 
information flow from X2 to X1 , written T2→1 , is

(6)QIPO = Q�

IPO
− Q

(7)RGW =
QGW

QGW + QAMO + QIPO

(8)RAMO =
QAMO

QGW + QAMO + QIPO

(9)RIPO =
QIPO

QGW + QAMO + QIPO

(10)
dX1

dt
= F1

(

X1,X2, t
)

+ b11Ẇ1 + b12Ẇ2

(11)
dX2

dt
= F2

(

X1,X2, t
)

+ b21Ẇ1 + b22Ẇ2

(12)

T2→1 = −E

[

1

�1

�
(

F1�1
)

�x1

]

+
1

2
E

[

1

�1

�2
(

b2
11
+ b2

12

)

�1

�x2
1

]

 where E represents mathematical expectation, �1 = �1
(

x1
)

 
is the marginal probability density function of X1 . Ideally, 
when T2→1 = 0,  X2 is not causal to  X1; otherwise, it is causal. 
In real applications, statistical significance should be tested. 
The units for T2→1 is nats per unit time.

The above formula is difficult to apply. Later, Liang 
(2014) proved that, under a linear assumption, its maximum 
likelihood is remarkably simple:

 whereT2→1 is now understood as the maximum likelihood 
estimator, Cij is the covariance between Xi and Xj , and Ci,dj 
is the covariance between Xi and a derived series using Euler 
forward differencing scheme:

More details are referred to Liang (2014). By applying 
Eq. (12), we can obtain, in a quantitative sense, the causali-
ties from GW, AMO and IPO to the precipitation at each 
grid, and hence their respective impacts. Significant tests 
(Liang 2014) will also be conducted.

2.2.4  AGCM experiments

To further substantiate the results, a set of SST sensitivity 
experiments will also be performed using the atmospheric 
general circulation model (AGCM) ECHAM version 4.6. 
The model was developed at the Max Planck Institute for 
Meteorology (MPI; Roeckner et  al. 1996) and evolved 
originally from the spectral weather prediction model of 
the European Centre for Medium Range Weather Forecasts 
(ECMWF). It is a spectral model with a triangular truncation 
at the wavenumbers 42 (T42) and 106 (T106). In our experi-
ments, we choose the T42 resolution (roughly equivalent to 
2.8°⋅2.8° in latitude and longitude) and 19 vertical levels. 
For each experiment, it is integrated for 30 years, and out-
puts the results of the last 20 years for analysis.

3  Results

3.1  Dominant SST modes contributing to the trend/
decadal precipitation variability

To explore the spatial distributions of coupling between 
the decadal variations in precipitation and SST, an SVD 
analysis is performed for the tropical land precipitation (30° 
N–30° S) and SST (45° N–20° S). As a pretreatment, we first 
remove the seasonal cycles and high-frequency variations 

(13)T2→1 =
C11C12C2,d1 − C2

12
C1,d1

C2

11
C22 − C11C

2

12

(14)Ẋj =
Xj,n+1 − Xj,n

Δt
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with a 9-year Lanczos low-pass filter. Considering that JJA 
and DJF mean precipitation patterns are different, the boreal 
summer and boreal winter cases are distinguished.

The first three coupled modes and the related time series 
resulting from the SVD analysis are displayed in Figs. 1a–i 
and 2a–i. The variances they possess are, respectively, 
48.7%, 24.3% and 8.5% for JJA, and 42.7%, 28.3% and 9.7% 
for DJF.

The first SST mode reveals a unified SST warming both 
during JJA and DJF (Figs. 1a and 2a) except in the subtropi-
cal central Pacific. The warming rates in the Indian Ocean, 
tropical Pacific and tropical South Atlantic are larger than 
other regions. In the subtropical central Pacific, the SST 
variation appears as a cooling trend, which somehow dif-
fers from the consistent global scale SST warming found in 
previous studies (Cane 1997; Hansen et al. 2006; Xie et al. 
2010; Mohino et al. 2011; Gu and Adler 2015). It implies 
that this mode is probably mixed with decadal/interdecadal 
oscillations which the SVD analysis cannot have them sepa-
rated. The principal components (PC1s) of SST and precipi-
tation are generally consistent with the trend of observed 
global mean SST (45° S–60° N) in JJA (Fig. 1c); their time 
series show an increasing trend over the whole period. A 
weak decreasing trend is visible from 1943 to 1970, which 
may be partially related to changes in global mean tempera-
ture due to or the anthropogenic aerosols during that period 
(e.g., Wilcox et al. 2013), or may be due to the residual 
decadal/interdecadal SST signals (Dong and McPhaden 
2017a, 2017b). A general reduction in precipitation is seen 
over the tropical areas in its first mode, as the SST increases 
(Fig. 1b), consistent with previous studies (e.g. Zhang et al. 
2007; Gu and Adler 2015). An enhanced precipitation area 
appears in the Gulf of Guinea, as the one shown in Mohino 
et al. (2011). Over north Australia, the rainfall shows a large 
drying trend.

For the second SVD mode during JJA, the spatial patterns 
and related PCs are shown in Fig. 1d–f. The SST pattern 
is characterized by warm anomalies in the entire Northern 
Atlantic and most of the Northern Pacific, implying a tel-
econnection between the two ocean basins. The time series 
of SST and precipitation show a consistent change with the 
AMO index after 1950, though some discrepancies exist 
before 1950s. The correlation coefficient between the SST 
time series and AMO index is up to 0.78. That is to say, 
the second SST mode is essentially from AMO. During 
the positive phase of AMO, the AMO-related rainfall vari-
ability (Fig. 1e) over Sahel shows a robust above-average 
rainfall, in opposition to the pattern associated with GW 
(Fig. 1b). In the next section, we will investigate the rela-
tive contributions of GW, AMO and IPO to the rainfall over 
Africa, and that over other regions in next section. Over 
South America, negative anomalies are found, except for a 
small area of northwestern South America. The precipitation 

over Australia is generally below average during the positive 
AMO phase.

The third mode during JJA, including its spatial patterns 
of SST and precipitation and their related PCs, are shown in 
Fig. 1g–i. The horseshoe SSTA pattern as shown in Pacific is 
similar to the IPO signal; the correlation coefficient between 
them is up to 0.83. The IPO index is also highly correlated 
to the time series of precipitation, with a coefficient being 
0.65. Notice that IPO is the third contributor to the decadal/
interdecadal variability of the JJA tropical precipitation. Its 
contribution to the variance is only 8.5%. The IPO-related 
rainfall variability shows a rather weak positive anomaly 
over almost entire Africa except Congo Basin. In South 
America, positive rainfall anomalies are observed in east-
ern Brazilian plateau.

In the DJF season (Fig. 2), the GW (Fig. 2a–c) is still the 
first dominant mode with the biggest variance contribution 
(42.6%). The precipitation related to GW over Australia is 
characterized by an east–west dipole pattern, in a way as the 
eastern Australia is getting wet and the western Australia 
getting dry. With GW, Africa also becomes dry in DJF, as 
in JJA. In DJF, IPO is the second contributor to the decadal/
interdecadal variability of tropical precipitation, with a vari-
ance of 28.3% (Fig. 2d, f). The correlation coefficient of its 
index with the SST series of SST is 0.89, and that with the 
precipitation series is also as high as 0.85 (Fig. 2f). During 
the positive IPO phase, the conspicuous dry anomalies are 
seen in the southern Africa, northern Australia and north-
western South America. Wet anomalies are seen in southern 
Asia except Indochina Peninsula (Fig. 2e). In this season, 
AMO is the third contributor to the decadal/interdecadal 
variability of tropical precipitation, only with 9.7% of the 
variance (Fig. 2g, i). The correlation coefficient between the 
time series of SST (precipitation) and the AMO index is 0.77 
(0.63). During the positive AMO phase, the precipitation 
increases in Africa, decreases in Central Australia (Fig. 2h).

3.2  Regression map

The above results demonstrated that GW, AMO and IPO are 
three dominant modes contributing to the trend/interdecadal 
variation of land precipitation, especially over the tropical 
land areas. In this section, the effects on the trend/interdec-
adal variation of the land precipitation at high latitudes are 
investigated. The regression maps of JJA and DJF precipi-
tations against GW, AMO and IPO indices are respectively 
constructed and compared to the SVD results.

In order to isolate the GW effect from the long time 
series of the global mean SST, before regression the high 
frequency signals are removed using the EEMD method. 
A 9-year Lanczos low-pass filter is applied to the AMO, 
IPO time series and the precipitation signals to remove the 
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interannual variations. The resulting three series are dis-
played in Fig. 5.

Figure 4a–f show the regressed JJA and DJF precipi-
tations against the GW, AMO and IPO indices. Over the 
tropical land, the JJA and DJF precipitations regressed onto 
the GW index (Fig. 4a, b) highly resembles that from the 
SVD analysis, with pattern correlation coefficient of 0.67 
for JJA and 0.70 for DJF. In JJA, a dry trend is found over 
the tropical land, northern China, Mongolia, eastern Russia, 
the south of Himalayas and Gran Chaco in South America, 
and wet trend found in Canada, southeastern and northwest-
ern China, and Scandinavia. In DJF, a wet trend is seen in 
western Australia, South America and Europe, and a dry 
trend identified in the southern Africa, western Canada and 
eastern Russia.

The regressed JJA and DJF precipitations against AMO 
(Fig. 4c, d) are consistent with the second SVD spatial 

pattern of precipitation over the tropical regions, with pat-
tern correlation coefficient of 0.62 for JJA and 0.54 for 
DJF. Besides the robust increased JJA rainfall over Sahel 
and reduced JJA rainfall over Guinea Gulf during the AMO 
positive phase (Zhang and Delworth 2006; Mohino et al. 
2011), wet anomalies are also found in the north of Russia, 
southeastern Asia, Alaska and the western coast of Europe. 
During the DJF AMO positive phase, significant dry anoma-
lies are seen in the middle of Australia and wet anomalies 
around Lake Baikal.

The regressed JJA and DJF precipitation fields against 
IPO (Fig. 4e, f) are also consistent with their correspond-
ing SVD patterns over the tropical regions except west 
Africa where dry anomalies are evident in JJA during the 
positive IPO phase (Fig. 4e). Besides that, dry anomalies 
are found over central Russia, and wet anomalies along the 
belt from the eastern European plain to the northeastern 

Fig. 4  Regressed land precipitation from CRU (mm  mon− 1) in JJA (left column) and DJF seasons (right column) onto to the normalized indices 
of GW (a, b), AMO (c, d) and IPO (e, f). The areas with dots are statistically significant at the 10% level
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China (Fig. 4e). The pattern correlation coefficient is 0.47 
for JJA, and 0.72 for DJF. IPO has a more significant impact 
on precipitation during DJF (Fig. 4f). Seesaw structures of 
precipitation anomalies are observed in the northeastern and 
southwestern North America, with wet anomalies over the 
southwestern United States. Wet anomalies are also found 
over the South Asia monsoon region, Brazilian plateau, and 
dry anomalies over Canada, Amazon Basin, southern Africa 
and East Australia during the DJF season of the positive 
IPO phase, in agreement with previous studies Meehl and 
Hu 2006; Meehl et al. 2013; Dai 2013; Reason and Rouault 
2002; Krishnan and Sugi 2003; Verdon et al. 2004; Henley 
et al. 2013; Dong and Dai 2015).

The above analyses confirm that GW, AMO and IPO are 
the three dominant modes modulating the trend/interdecadal 
variation of land precipitation. In the following, we give an 
evaluation of their importance relative to each other.

3.3  Relative contributions of GW, AMO and IPO

The above results show that the low-frequency variability of 
land precipitation during 1934–2015 can be interpreted as 
the joint effect of GW, AMO and IPO. In this section their 
relative contributions are investigated. The total variance 

contribution to the low-frequency land precipitation variabil-
ity is obtained via multivariate regression (Eq. 1). Shown in 
Fig. 5b–d are the respective percentages. It should be noted 
that their sum equals to 1, rather than the total variance con-
tribution explained by the linear regression model.

As shown in Figs. 5a and 6, not all the low-frequency 
variability of land precipitation can be explained by the three 
modes. On average, they can make about 30% of the trend/
interdecadal variability. Locally, the amount can be as high 
as more than 40% for JJA precipitation over Canadian Shield 
in North America, Brazil Plateau in South America, Sahel, 
Siberia, southern Himalayas, and for the DJF precipitation 
over southwestern US, Argentina, west Siberia Plain and 
East Australia. The region dependence is clearly seen in 
Fig. 6, for the JJA precipitation, the three can explain 43% 
of that over northern Africa, but account for only 19% of 
that over Australia.

3.3.1  The JJA season

Consider the JJA season first (Figs. 5 and 6). Over Africa, 
especially over the northern Africa, AMO plays a domi-
nant role on the precipitation variation, contributing 
44% of the 43% variance. GW and IPO contribute the 

Fig. 5  a Total variance contributions of GW, AMO and IPO to the 
low-frequency variability of land precipitation from CRU in JJA of 
1934–2015, and relative contributions of b GW, c AMO and d IPO. 

The negative areas signify the negative regressed precipitation with 
the variance fractions. The boxes in a are the domains specified to 
calculate the domain-averaged relative contributions in Fig. 6
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remaining 36% and 20%, respectively. Over the northern 
North America, GW dominates, contributing 40% of the 
explained 30% variance. This region gets wet with GW. 
Secondary to GW, AMO and IPO make the remaining 
34% and 26%, respectively. Over South America, AMO’s 
role is dominant, accounting for 46% of the explained 
35% variance. More specifically, negative precipitation 
anomalies are observed during AMO’s positive phase. 
GW and IPO make the remaining 29% and 25%, respec-
tively. Over Europe, especially over West Europe, AMO 
also plays a dominant role, making 53% of the 29% vari-
ance, and reduction in rainfall is related to the positive 
phase of AMO. The contributions of GW and IPO are 
28% and 20%, respectively. Over Asia, GW dominates, 
contributing 40% of the explained variance (27%). This 
region becomes dry with GW except northwestern China. 
Secondary to GW, AMO and IPO contribute 35% and 
25%, respectively. Over Australia, it is IPO that plays a 
dominant role, accounting for 37% of the explained vari-
ance (19%). Secondary to IPO, AMO and GW contribute 
35% and 28%, respectively.

3.3.2  The DJF season

The results for the DJF season are shown in Figs. 7 and 
8. In DJF, GW dominates the precipitation variability in 
most areas except for southern North America, where IPO 
is the dominant mode. Over Africa, GW contributes 42% 
of the 26% variance. Second to it is IPO, which makes 33% 
of the variance. This region becomes dry with GW and in 
positive IPO phase. Over North America, GW accounts for 
41% of the explained 27% variance, taking the leading role. 
It is followed by IPO, which contributes 34% of the vari-
ance, and by AMO, which makes the remaining 25%. Over 
southern North America, IPO dominates, making 55% of 
the explained 33% variance. The region is wet during the 
positive phase of IPO. Over Europe, GW is dominant, mak-
ing 52% of the 27% variance. It gets wet over Europe with 
GW, especially over West Europe. AMO and IPO contribute 
equivalently, both being 24%. Over Asia, GW accounts for 
45% of the explained 33% variance. AMO and IPO also have 
the same contribution (28%). Over Australia, GW’s contri-
bution totals 39% of the 30% variance. Australia, especially 
West Australia is getting wet with GW. The role of IPO is 
secondary, accounting for 34% of the variance, and AMO 
comes next, with a fraction contribution of 27%.

Figure 9 shows the zonal averages of the percent vari-
ances of GW, AMO and IPO to the JJA and DJF land pre-
cipitations from CRU. In JJA, the contributions of GW, 
AMO and IPO to the land precipitation are of the same 
order in the thin latitude bands: 10° S–10° N, 50° N–60° N 
and 40° S–50° S. Outside GW and AMO dominate. In DJF, 
the AMO contribution is smallest from 40°S to 50°N. IPO 
plays a dominant role between the latitudes 20° S and 40° N. 
Beyond 20° S–40° N, GW’s role is most important.

3.4  Causality between ocean modes and land 
precipitation

To cross-validate the above results, a recently developed 
causality analysis is applied to re-investigate the impacts 
of GW, AMO and IPO on the land precipitation variability. 
This causality analysis, which is based on information flow, 
a real physical notion which has been under development in 
physics for more than 30 years, is distinctly different from 
the other causal inference techniques in that it is rigorously 
derived from first principles in physics, and it is quantita-
tive hence capable of giving us patio temporal structures. 
Besides, it is a physical notion, not a statistical notion. Basi-
cally, when a computed rate of information flow from one 
event A to another event B is nonzero, then A is causal to B, 
and the magnitude tells the size of causality. In real prob-
lems, of course, significance test should be performed. It 
should be noted that the causality from A to B has nothing to 

Fig. 6  Domain-averaged total variance contributions of GW, AMO 
and IPO to the low-frequency variability of JJA land precipitation 
from GPCC, and the relative contributions of GW, AMO and IPO, 
respectively. Domains are: Africa (AF: 20° W–40° E, 40° S–30° N), 
northern Africa (NAF: 20° W–40° E, 0–30° N), North America (NA: 
160° W–60° W, 10° N–70° N), northern North America (NNA: 160° 
W–60° W, 40° N–70° N), South America (SA: 80° W–30° W, 60° 
S–10° N), Australia (AS: 110° E–160° E, 40° S–0), Europe (EU: 10° 
W–60° E, 40° N–70° N), West Europe (WEU: 10° W–30° E, 40° 
N–70° N), Asia (AS: 60° E–180° E, 0–70° N) East Asia (EAS: 70° 
E–130° E, 0–70° N)
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do with that from B to A. This is completely different from 
correlation analysis.

Figure 10a shows the information flow between GW and 
the land precipitation from the CRU dataset. It is computed 
using Eq. (10) between the GW index and the CRU rainfall 
time series at each grid point. Clearly, GW is significantly 
causal to precipitation over many regions, and the causal-
ity pattern (Fig. 10a) is similar to the fraction of variance 
explained by GW (Figs. 7b and 8b) over Greenland, Scan-
dinavia, Canadian Shield, the south of Great Lakes in North 
America, southern South America, Africa, the central and 
northern Eurasian and western Australia. In contrast, this 
causality is not significant over the eastern Eurasian. This is 
different from the results in Fig. 7b.

The information flow from AMO to precipitation is 
depicted in Fig. 10b. Obviously, over Sahel, Siberia, south-
ern Unite States, northeastern South America and central 
Australia, the causality is significant, which means precipi-
tation variation over these regions can be explained by the 
AMO. This is consistent with the fractions of variance con-
tributions (Figs. 7c and 8c).

Figure 10c displays the information flow from IPO to 
precipitation. Significant causality has been detected around 
southwestern United States, northeastern and southern South 
America, southern Africa, Kazakhstan and Uzbekistan, most 

Fig. 7  Same as Fig. 5, but for the precipitation from CRU in DJF. The boxes in a are the domains specified to calculate the domain-averaged 
relative contributions in Fig. 8

Fig. 8  Same as Fig.  6, but for the precipitation from CRU in DJF. 
Domains which are not defined in Fig. 6 are: Southern Africa (SAF: 
20° W–40° E, 40° S–0), Southern North America (SNA: 160° W–60° 
W, 10° N–40° N), East Europe (EEU: 30° E–60° E, 40° N–70° N)
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Fig. 9  Zonal averaged relative contributions of GW (red line), AMO (blue line) and IPO (black line) to a the land precipitation from CRU in JJA 
and b the land precipitation in DJF

Fig. 10  Information flow from a GW, b AMO and c IPO to the land precipitation from CRU in 1934–2015. The areas with dots are statistically 
significant at the 10% level
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area of Australia except Great Victoria Dessert, and south-
eastern and northern China. This causal pattern is similar to 
the fraction distribution of variance contribution as shown 
in Fig. 8d.

Obviously, the causal relations are mostly consistent 
with the SVD and regression results, which are henceforth 
cross-validated.

3.5  Numerical experiments

To further substantiate the inferred impacts of AMO and 
IPO on the land precipitation variation, five sets of numeri-
cal experiments are conducted using the ECHAM version 
4.6. Table 2 is a summary of these experiments.

The control run (CTL) of the experiments is driven by the 
observed climatological monthly SST from 1934 to 2015. 
We need to take a look at the SST anomalies related to AMO 
and IPO.

Figure 11a, b show the global SSTs regressed onto the 
1935–2015 AMO and IPO indices (Fig. 3), which cor-
respond to the positive phases of the AMO and IPO sig-
nals, respectively. Before regression, the high-frequency 
and seasonal cycle signals have been removed from the 
monthly series with a 9-year Lanczos low-pass filter. As 
shown in Fig. 11a, the positive AMO phase is associated 
with the basin-wide warmer SST over the North Atlantic 
Ocean and cooler SST over the South Atlantic. There are 
also positive loadings over the tropical Indian Ocean and 
Pacific. Mohino et al. (2011) suggested that the positive 
phase of the AMO is associated with cooler SST over the 
tropical Indian Ocean. However, they failed to obtain the 
increased Sahelian rainfall with the forcing of the posi-
tive SSTA over North Atlantic and the negative SSTA 
over tropical Indian Ocean. Zhang and Delworth (2006) 
achieved the perfect wet/drought pattern over Sahel with a 
hybrid coupled model. In our study, as will be seen soon, 
the wet (drought) pattern over Sahel can’t be forced by 

the only the positive (negative) SSTA over North Atlan-
tic in the absence of the tropical Indian Ocean SSTA. As 
shown in Fig. 12b, the IPO-associated SST pattern shows 
the familiar ‘horse shoe’ pattern over the Pacific, with 
the positive anomalies over the tropical central eastern 
Pacific and the negative anomalies over the North Pacific. 
There is also a positive loading over the Indian Ocean, 
which agrees with that in many previous studies (e.g. 
Cole et al. 2000; Han et al. 2014; Dong et al. 2016; Dong 
and McPhaden 2017a, b), where the decadal/interdecadal 

Table 2  Summary of the ECHAM4 model experiments

Experiments name Area of anomalous SSTs

CTL run Observed climatological monthly SST
AMO experiments
 Warm AMO_NA run Add or subtract the positive SST anomalies over 

the North Atlantic Cold AMO_NA run
 Warm AMO_NAI run Add or subtract positive SST anomalies over the 

North Atlantic and the Indian Ocean Cold AMO_NAI run
IPO experiments
 Warm IPO_TP run Add or subtract the positive SST anomalies over 

the tropical Pacific Cold IPO_TP run
 Warm IPO_TPI run Add or subtract the positive SST anomalies over 

the tropical Pacific and the Indian Ocean Cold IPO_TPI run

Fig. 11  Regressed SST (°C) onto a the AMO and b IPO indices. The 
rectangular boxes are the specified SSTA domains
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variability of Indian Ocean is observed to be highly related 
to IPO. This suggests that the SST over the tropical Indian 
Ocean is partially co-varying with IPO or AMO.

As said above, the control run (CTL) is forced with the 
observed 1934–2015 climatological monthly SST. For the 
other four sensitivity experiments (Table 2), the SST defined 
as positive anomalies in different domains (Fig. 11) is added 
to the observed climatology. They are, specifically,

• Run 1 (hereafter warm AMO_NT run): positive SST 
anomalies over the domain of the North Atlantic (0–65° 
N, 80° W–0), as shown in Fig. 11a, are superimposed to 
the climatology;

• Run 2 (hereafter warm AMO_NTI run): positive SST 
anomalies over both domains of the North Atlantic 
(0–65°N, 80° W–0) and the tropical Indian Ocean (30° 
S–30° N, 30° E–100° E) (Fig. 11a) are added to the cli-
matology;

• Run 3 (hereafter warm IPO_TP run): positive SST anom-
alies over the tropical Pacific (30° S–30° N, 150° E–90° 
W) (Fig. 11b) are superimposed to the climatology;

• Run 4 (hereafter warm IPO_TPI run): positive SST 
anomalies over both the tropical Pacific (30°S–30°N, 
150°E–90°W) and the tropical Indian Ocean (30° S–30° 
N, 30° E–100° E) (Fig. 11b) are superimposed to the 
climatology.

The cold experiments are conducted with the positive 
SSTA in specified domains subtracted from the observed 
climatological monthly SST. The model is integrated for 
30 years in each experiment and the results of the last 
20 years are analyzed below.

Figure 12 shows the mean land precipitation and the 850-
hPa wind from the observation (Fig. 12a, b) and control run 
(Fig. 12c, d) during the JJA and DJF seasons, respectively. 
As can be seen, the common features of the anticyclones 
over the north Pacific and the North Atlantic and the cross 
equatorial flow over the Indian Ocean during JJA are well 
reproduced. Discrepancies do exist (Fig. 12e, f), of course. 
For example, the monsoon trough in the western Pacific and 
southerly along the East Asian coast are modeled weak in 
JJA, causing insufficient JJA rainfall over East Asia, and the 

Fig. 12  Precipitation and 850-hPa horizontal winds for observation a, b and the CTL run c, d and the differences between them
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modeled rainfall in southern South Africa is too weak both 
in JJA and DJF.

Figure 13 shows the different precipitation and 850-hPa 
horizontal winds in JJA and DJF in the warm AMO_NA 
run and cold AMO_NA run, those in the warm AMO_NAI 
run and cold AMO_NAI run, and the difference between 
them. During the JJA of the positive AMO phase, positive 
precipitation anomalies over Sahel are only reproduced in 
the AMO_NAI run (Fig. 13c), not in the AMO_NA run. 
The AMO_NAI experiment also captures the positive pre-
cipitation anomalies over South China and the negative 
precipitation anomalies over northeastern North America, 
Mexica and central South America (Fig. 13c, e), agreeing 
with the regression results in Fig. 4c. The circulation anoma-
lies over the North Atlantic are characterized by cyclonic 
anomalies at 850 hPa. The anomalous cyclone brings cold 
dry air to America, and warm moist air to the northern 

Africa during JJA, causing the dry and wet conditions in 
these areas. Meanwhile, anomalous westerly winds from 
the ocean enhances precipitation in East Asia. During the 
DJF of the positive AMO phase (Fig. 13b, d, f), anomalous 
cyclones tend to occur east to Baikal, leading to positive pre-
cipitation anomalies. Positive precipitation anomalies over 
the northeastern South America are also reproduced in the 
AMO_NAI experiments. However, the negative precipita-
tion anomalies in the middle of Australia are not captured 
the AMO_NAI experiments.

The ECHAM experiments have also captured many 
precipitation features related to IPO, as shown in Fig. 14. 
The above analysis reveals that the IPO contributions are 
mainly in the boreal winter season. Thus, we focus on the 
DJF season here. During the DJF of the positive phase 
of IPO (Fig. 14b, d, f), positive precipitation anomalies 
over southwestern United States, South Asia monsoon 

Fig. 13  Simulated precipitation and 850-hPa horizontal winds for 
the AMO_NA experiment (a, b), the AMO_NAI experiment (c, d), 
and the differences between them (e, f) for JJA (left column) and DJF 
(right column). The areas with dots are statistically significant at the 

10% level. The AMO_NA experiment refers to the AMO_NA warm 
run minus the AMO_NA cold run. The AMO_NAI experiment refers 
to the AMO_NAI warm run minus the AMO_NAI cold run
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regions, and negative precipitation anomalies over Ama-
zon Basin are well captured in the IPO_TPI run, in good 
agreement with the precipitation regressed onto the IPO 
index (Fig. 4f). The IPO_TP run fails to reproduce these 
important features (Fig. 14b, f), due to a lack of the Indian 
Ocean SSTA forcing. Though the decadal Indian Ocean 
basin SSTA is a response to remote forcing from the IPO, 
with Indian Ocean positive SSTA related to a positive IPO 
and negative SSTA related to a negative IPO (Han et al. 
2014; Dong et al. 2016; Dong and McPhaden 2017a, b), 
the model results here suggest that the Indian Ocean SSTA 
affects the land precipitation variation together with IPO. 
Discrepancies are seen between the regressed precipitation 
(Fig. 4f) and the results from the IPO_TPI run (Fig. 14d), 
which fails to reproduce the negative precipitation anoma-
lies in southern Africa and eastern Australia. In a word, 
the forcing of the Indian Ocean SST anomalies is pivotal 

for the role of AMO and IPO to take effect in causing the 
land precipitation variation.

Many studies have also demonstrated that the warming 
trend in Indian Ocean has important effect on some key 
regions for AMO and IPO, such as the south Asian monsoon 
region, Africa, etc. Specifically, Bader and Latif (2003a, b), 
Hoerling et al. (2003) and Lu (2009) conducted atmospheric 
general circulation model (AGCM) experiments and found 
that the warming in Indian Ocean leads to a drying trend in 
Sahel. Williams and Funk (2011) and Tierney et al. (2013) 
stressed that the Indian Ocean drives the East African rain-
fall interdecadal variability by altering the local Walker cir-
culation, whereas the influence from Pacific Ocean is mini-
mal. In addition, the interdecadal variability of the summer 
rainfall over East Asia is largely influenced by the change of 
SSTA and convective activity in the tropical Indian Ocean 
and tropical western Pacific (Hu 1997; Zhou et al. 2009; 

Fig. 14  Simulated precipitation and 850-hPa horizontal winds for the 
IPO_TP experiment (a, b), the IPO_TPI experiment (c, d), and the 
difference between them (e, f) for JJA (left column) and DJF (right 
column). The areas with dots are statistically significant at the 10% 

level. The IPO_TP experiment refers to the IPO_TP warm run minus 
the IPO_TP cold run. The IPO_TPI experiment refers to the IPO_TPI 
warm run minus the IPO_TPI cold run
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etc.). Zhang (2017) suggested that the SST anomalies in the 
southern Indian Ocean play a crucial role on the interdec-
adal change of the East Asian summer monsoon, so on and 
so forth. All these studies substantiate our aforementioned 
finding that Indian Ocean is pivotal in getting AMO and 
IPO to work together to cause the precipitation variabilities.

4  Summary

This study has explored the relative contributions of ocean 
modes to the changes of the JJA and DJF land precipita-
tions during the period 1934–2015. Three dominant modes, 
namely, GW, AMO and IPO, have been identified through 
an SVD analysis of the tropical land precipitation between 
30° N and 30° S and the SST between 45° N and 20° S. 
The global precipitation trend is statistically linked to the 
warming trend of SST. Its interdecadal variation is related 
to AMO and IPO. Numerical experiments with the ECHAM 
4.6 further reveal the effects of Pacific and Atlantic SST 
anomalies (SSTA), and show that the Indian Ocean SSTA 
is pivotal for AMO and IPO to take effect in causing the 
land precipitation variabilities, a fact which has not been 
reported before.

The relative contributions of GW, AMO and IPO to the 
global land precipitation variation are further quantitatively 
assessed. This relative contribution quantification is, to our 
best knowledge, for the first time. Over tropics, GW plays 
a dominant role in both JJA and DJF. In JJA, AMO is the 
second dominant contributor, while IPO becomes so in DJF. 
The contributions of GW, AMO and IPO to the JJA land 
precipitation are of the same order with the latitude bands: 
10° S–10° N, 50° N–60° N and 40° S–50° S. Outside the 
bands GW and AMO are the two dominant contributors. 
In DJF, IPO plays a dominant role between 20° S–40° N. 
Beyond 20° S–40° N, GW takes over the role. The AMO 
contribution is smallest between 40° S–50° N.

The three ocean modes have different contributions in 
different regions (Figs. 6 and 8). The percentage contribu-
tion from GW is more than 40% over North America and 
Asia in JJA, and more than 50% over Europe in DJF. With 
GW, in JJA, the northeastern North America gets wet, and 
Asia, except the northwestern China, becomes dry; in DJF, 
Europe, especially west Europe, Greenland, Scandinavia, 
South America and west Australia are getting wet, while 
West Canada, East Russia are getting dry. Africa is getting 
dry in both seasons.

In JJA, the AMO percentage contribution is more than 
40% over northern Africa, Europe, and South America. 
Positive precipitation anomalies are found over Sahel and 
Siberia, while negative precipitation anomalies found over 
South America during the positive phase of AMO. In DJF, 
the IPO contribution is more than 50% over the southwestern 

United States. Northeastern North America and southeastern 
South America, southern Africa, East Australia, South Asia 
monsoon region and North China are also affected by IPO. 
Increased rainfall over the Brazil Plain and North China, 
decreased rainfall over northeastern South America, south-
ern Africa and East Australia are observed during the posi-
tive IPO phase.

The obtained contributions have been cross-validated 
through information flow analysis, a recently developed tool 
for causal inference in a rigorous and quantitative sense. 
Shown in this study are patterns of causalities from GW, 
AMO, and IPO to the interdecadal precipitation variabilities. 
Regions sensitive to the three modes have been identified 
henceforth (in terms of information flow), which are in gen-
eral consistent with the SVD and regression analysis results.
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