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ABSTRACT Panel data, which consist of observations on many individual units over two or more 

instances of time, have gradually become an important type of scientific data. Subsequently causal 

inference for panel data has attracted enormous interest from many fields as well as statistics. In this 

study, the rigorously formulated information flow analysis for time series, which is very concise in form 

and has been successfully applied in different disciplines, is generalized to identify the causality from 

homogeneous and independent identically distributed panel data. The resulting formula bears the same 

form as that for the former, though the meanings of the symbols differ. An algorithm is then proposed 

for panel data causality analysis, which has been validated with both linear and nonlinear problems. It 

has also been put to application to examine the causal relations among economic growth, energy 

consumption, trade openness, and energy price based on 15 Asian countries. Clearly identified are a 

strong bidirectional causality between economic growth and energy consumption, and a strong causality 

from import and export trade to economic growth. Energy price has no direct impact on energy 

consumption; it, instead, exerts a weak effect on the latter through influencing economic growth. 

INDEX TERMS Panel data, Information flow, Causality, Economy, Energy 

I. INTRODUCTION 

In the past two decades, data have been accumulated at an 

exponential rate in essentially all fields, partly due to the easy 

access to social media and the interconnectivity of our society 

[1]. How to mine the causal information from the different 

datasets hence becomes a hot issue in the digitized society [2]. 

One direct way is to identify the causal possible relations. 

Unfortunately, causal inference is a very challenging problem. 

So far as of today, the methodologies for identifying causality 

are yet to be improved[3]. 

Most of the data can be classified into three categories: 

temporal data, cross-sectional data, and panel data. A set of 

temporal data or time series is a series of data points indexed 

(or listed or graphed) in time order. Differently, data collected 

by observing many individuals at the one instance of time is 

termed cross-sectional. Time series and cross-sectional data 

can be thought of as special cases of panel data, which consist 

of observations on many individual units over two or more 

periods of time. There are several important advantages of 

panel data comparing to data sets with only a temporal (time 

series) or individual (cross section) dimension [4], one being 

the ability to control for possibly correlated, time-invariant 

heterogeneity without actually observing it. Besides, panel 

data can reduce the collinearity among explanatory variables, 

increase in efficiency of estimators, and alleviate problems of 

aggregation. 

Several methods have been proposed to make causal 

inference with panel data, among which the most popular one  

is Granger causality analysis, which is based on the idea that 

the cause occurs before the effect, hence if an event 𝑋 is the 

cause of another event 𝑌, then 𝑋 should proceed 𝑌 [5]. (This 

basis, however, is recently challenged by an observation with 

a purported generated dynamical system with synchronization; 

see [6]). For example, Holtz-Eakin et. al. [7] considered 

estimation and testing of vector autoregression (VAR) 

coefficients in panel data to calculate the Granger causality, 

and applied the techniques to analyze the dynamic 
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relationships between wages and hours worked in two samples 

of American males. The same method was used by [8] to 

report the findings on the relationship between foreign direct 

investment and pollution across 112 countries over 15–28 

years. Kónya [9] used the Panel-Data Granger causality test 

approach based on bootstrap and studied the relationship 

between exports and economic growth in OECD countries. 

Similar approach was adopted by Bedir and Yilmaz[10] to 

examine the causal relation between the logarithms of the 

human development index and CO2 emissions in 33 

organizations for economic cooperation and development 

countries. Gupta and Singh [11] employed the Johansen 

cointegration technique followed by vector error correction 

model (VECM) and standard Granger causality test to 

investigate the causal linkage between FDI and GDP of 

BRICS nations. These applications are generally successful in 

their respective contexts. 

Despite these studies, the causality analysis for panel data 

is still in its early stage of development. Both theoretically and 

practically there still exist much room for improvement. 

Recently, it has been realized that causality and information 

flow (IF) are real physical notions and hence can be put on a 

rigorous footing. In other words, they can be derived from first 

principles in physics [12], rather than axiomatically proposed 

as an ansatz.  

Effort along this line can be traced back to the early work 

by Liang and Kleeman [13] on IF, but its ability has just been 

recognized with the publication of the time series study by 

Liang [14], where it is shown that causality can be assessed in 

a very easy way, with only sample covariances involved. The 

resulting formula, albeit simple, proves to be remarkably 

successful in solving many problems which defy the 

traditional approaches. It also fixes the philosophical debate 

on causation versus correlation (cf. section 2). Ever since then, 

the IF-based causality analysis has been widely applied to the 

problems with  time series such as global warming [15], [16], 

El Niño [14], typhoon genesis prediction [17], space weather 

[18], chlorophyll variability [19], relation between soil 

moisture and precipitation [20], financial time series analysis 

[21], neuroscience problems [22], to name a few.  

Considering the success of the IF-based causality 

analysis for time series, we henceforth want to generalize it to 

panel data. In the following a brief introduction of the theory 

is first presented, then in section III, we show that a 

generalization can be fulfilled, and an algorithm is then 

proposed. In section IV, the algorithm is validated with a linear 

stochastic system and a highly chaotic deterministic system. 

Section V give an application and section VI summarizes the 

whole study. 

II.  INFORMATION-FLOW AND CAUSALITY BETWEEN 
TIME SERIES—A BRIEF REVIEW 

Different from the various statistical approaches for causal 

inference, the information flow-based causality analysis is 

derived from first principles in physics. Ever since Liang and 

Kleeman [13], much effort has been invested to establish a 

rigorous formalism which has just been fulfilled [12]. 

Accordingly a causal inference technique is developed for 

time series  [14]. It is concise in form, easy to implement and, 

moreover, quantitative in nature (see below (3)).  Since its 

advent, many applications in different disciplines have been 

carried out with remarkable success. The following material 

is just a very brief introduction of the theory that is needed 

for this study. For a systematic treatment and other materials, 

see [12], among other papers. 

      This line of work begins with the concept of information 

flow which is defined as follows: 

 

Definition II.1 In a dynamical system (Ω, Φ𝑡) where Ω is 

the phase space and Φ𝑡 may be a flow or a discrete mapping, 

the information flow from a component 𝑋2 to another 

component 𝑋1, written 𝑇2→1, is defined as the contribution of 

entropy from 𝑋2 per unit time (continuous time case) or per 

step (discrete mapping case) in increasing the marginal 

entropy of 𝑋1 as the state is steered forth by Φ𝑡. 

 

With this, causality can be defined, in a quantitative sense, 

 

Definition II.2   𝑋2 is causal to 𝑋1 iff the information flow  

𝑇2→1 ≠ 0 . The strength of the causality from 𝑋2  to 𝑋1  is 

measured by  |𝑇2→1|. Likewise, the causality from 𝑋1 to 𝑋2 

can be defined. 

 

Remark 1. A nonzero 𝑇2→1  may be either positive or 

negative. A positive 𝑇2→1  means that 𝑋2  makes 𝑋1  more 

uncertain, and vice versa. But for the purpose of causal 

inference, the sign is not essential; we just consider its 

magnitude.  

Remark 2. By the definition, we can distinguish three cases: 

(1) noncausal (𝑇2→1 = 𝑇1→2 = 0), (2) unidirectionally causal 

( 𝑇2→1 ≠ 0, 𝑇1→2 = 0  or 𝑇2→1 = 0, 𝑇1→2 ≠ 0 ), (3) 

bidirectionally causal (𝑇2→1 ≠ 0, 𝑇1→2 ≠ 0), as discussed in 

[23]. 

Remark 3. In the above definitions entropy is generally 

understood as Shannon entropy, but other entropies may also 

apply. In this study, we stick to Shannon entropy. 

 

Now consider a two-dimensional (2D) stochastic 

dynamical system 

𝑑𝑿 = 𝑭(𝑿, 𝑡)𝑑𝑡 + 𝑩(𝑿, 𝑡)𝑑𝑾, (1) 

where 𝑭 = (𝐹1, 𝐹2) is the vector of drift coefficients, 𝑿 =
(𝑋1, 𝑋2) ∈ ℝ2 are the random variables, 𝑾 = (𝑊1, 𝑊2) is a 

standard 2D Wiener process and 𝑩 = (𝑏𝑖𝑗) is the matrix of 

diffusion/volatility coefficients. Liang [24] established that 

the time rate of IF from  𝑋2 to 𝑋1with respect to Shannon 

entropy is:
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𝑇2→1 = −𝐸 (
1

𝜌1

𝜕𝐹1𝜌1

𝜕𝑥1

) +
1

2
𝐸 (

1

𝜌1

𝜕2𝑔11𝜌1

𝜕𝑥1
2 ), (2) 

where 𝜌 is the joint probability density function of X, 𝜌1 is 

the marginal density of 𝑋1 , 𝑔11 = ∑ 𝑏1𝑘
22

𝑘=1 , and 𝐸  is the 

expectation with respect to 𝜌. Later on it has been shown that 

the formula is the same with respect to Kullback-Leiber 

divergence [25]. Likewise, the IF from  𝑋1 to 𝑋2 is 

𝑇1→2 = −𝐸 (
1

𝜌2

𝜕𝐹2𝜌2

𝜕𝑥2

) +
1

2
𝐸 (

1

𝜌2

𝜕2𝑔22𝜌2

𝜕𝑥2
2 ), 

Ideally, if 𝑇2→1 = 0, then 𝑋2 is not causal to 𝑋1; otherwise it 

is causal, and the magnitude of |𝑇2→1| means the strength of 

the causality. The larger |𝑇2→1|, the stronger causality from 

𝑋2 to 𝑋1.In practice, significance should be tested prior to 

making the inference. 
The above derived information flow has many important 

properties. The first is the “Principle of Nil Causality” [12]: 

a process, say 𝑋, has a zero causality to another process, say 

𝑌,  if the evolution of 𝑌 does not depend on 𝑋. This is a basic 

principle that all formalisms try to verify in applications, 

while in this formalism, it is a proven theorem. Many other 

properties can be seen in [12] and [25].  

The IF formula has been validated with many highly 

chaotic systems, such as baker transformation, Hénon map, 

Kaplan-Yorke map, Rössler system, truncated Burgers-

Hopft system, to name a few [12], [26]. Under a linearity 

assumption, Liang[14] further established that it can be 

estimated from two time series, say, 𝑋1 and 𝑋2. The resulting 

maximum likelihood estimator is:  

 𝑇̂ 2→1 =
𝐶11𝐶12𝐶2,𝑑1 − 𝐶12

2 𝐶1,𝑑1

𝐶11
2 𝐶22 − 𝐶11𝐶12

2 , (3) 

where 𝐶𝑖𝑗  is the covariance between 𝑋𝑖  and 𝑋𝑗 , 𝐶𝑖,𝑑𝑗  is the 

covariance between  𝑋𝑖  and  𝑋̇𝑗 , and 𝑋̇𝑗 = (𝑋𝑗(𝑡 + 𝑘𝛥𝑡) −

𝑋𝑗(𝑡))/(𝑘𝛥𝑡)  is the difference approximation of 𝑑𝑋𝑗 𝑑𝑡⁄  

using the Euler forward scheme. Here k is usually 1; for cases 

of deterministic chaos, it should be set 2. This formula is very 

simple in form but evidently very successful in real 

applications, some of which have been mentioned in the 

introduction above. 

Considering that there is a long-standing philosophical 

debate over causation versus correlation, rewrite (3) in terms 

of correlation coefficients: 

𝑇̂2→1 =
𝑟

1 − 𝑟2
(𝑟2,𝑑1

′ − 𝑟𝑟1,𝑑1
′ ), (4) 

here  𝑟 =
𝐶11

√𝐶11𝐶22
 is the sample correlation coefficient 

between  𝑋1  and 𝑋2 , and 𝑟𝑖,𝑑𝑗
′ =

𝐶𝑖,𝑑𝑗

√𝐶11𝐶22
 the “correlation 

coefficient” between 𝑋i and 𝑋̇𝑗 . So, if 𝑟 = 0, 𝑇̂2→1 = 0; the 

converse, however, is not necessarily true. In other words, 

causation implies correlation, but correlation does not 

imply causation. Equation (4), therefore, bridges causation 

and correlation with a simple mathematical relation. 

III.  CAUSALITY ANALYSIS FOR HOMOGENEOUS I.I.D. 
PANEL DATA -– AN ALGORITHM 

Panel data not only consist of observations over time, but 

also over many individual units. The above dynamical 

system-based formula then may not be directly applicable. 

This is different from  Granger causality, which is 

fundamentally a notion of probabilistic conditional 

independence, and hence  can be applied not only to time 

series data but also to cross-section and panel data [27]. We 

need to re-establish from scratch a formula of the like of (3). 

We first give a definition for panel data causality.  

 

Definition III.1 For a homogeneous panel dataset, the 

causality from a variable, say 𝑋2 , to another variable 𝑋1 

between two cross-sections is defined as the absolute value 

of the information flow from 𝑋2  to 𝑋1  as the underlying 

system evolves between the two steps. 

 

Remark: For panel datasets with more than 2 cross-sections, 

a relation of causality vs. time step can be obtained by 

computing the information flows between adjacent steps. 

 

As Liang [14], we assume a linear model. Though this sets a 

limitation, the formula (3) has proved to be remarkably 

successful in many highly nonlinear problems. In fact, this is 

not surprising; anyhow, when correlation is referred we 

usually mean linear correlation.  

 

Theorem III.1 Suppose a homogeneous i.i.d. panel dataset 

is generated through some linear system with Wiener 

processes, and 𝑋2 and 𝑋1 are the two variables of the dataset. 

Then the information flow from 𝑋2  to 𝑋1  between two 

adjacent steps (𝑡, 𝑡 + ∆𝑡) is 

𝑇2→1 =
𝜎12

𝜎11

⋅
(−𝜎12𝜎1,𝑑1 + 𝜎11𝜎2,𝑑1)

(𝜎11𝜎22 − 𝜎12
2 )

, (5) 

where 𝜎𝑖𝑗  are population covariances between 𝑋𝑖 (t) and 

𝑋𝑗(𝑡), and 𝜎𝑖,𝑑𝑗  =𝐸(𝑋𝑖(𝑡) − 𝐸𝑋𝑖(𝑡))(∆𝑋𝑗 − 𝐸∆𝑋𝑗) ∆𝑡⁄ , with 

∆𝑋𝑗 = 𝑋𝑗(𝑡 + Δ𝑡) − 𝑋𝑗(𝑡). 

 

Proof 

In (1), let 

𝑭 = [
𝐹1

𝐹2
] = [

𝑎11𝑋1 + 𝑎21𝑋2

𝑎12𝑋1 + 𝑎22𝑋2
]. (6) 

It has been established in [14] that (2) is reduced to  

𝑇2→1 = 𝑎11

𝜎12

𝜎11

, (7) 

which is remarkably simple. Here 𝜎𝑖𝑗 make the entries of the 

population covariance matrix. We now estimate this formula, 

given an individual independent ensemble of panel data with 

two time instances spanned by an interval ∆𝑡. 

Different from the time series considered in [14], which 

requires some extra assumption such as stationary, here the 

estimation of (7) turns out to be much easier. The reason is 

that (2) appears in a form of ensemble mean, while a set of 

panel data provides a natural ensemble. As Liang[14], 

discretize (1) with the Euler-Bernstein scheme the dynamical 

system to get
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𝑋1(𝑡 + ∆𝑡) = 𝑋1(𝑡) + ∆𝑡(𝑎11𝑋1 + 𝑎21𝑋2) + 𝑏11∆𝑊, 
where ∆𝑤~𝒩(0, ∆𝑡). For convenience, rewrite it as 

𝑎11𝑋1 + 𝑎21𝑋2 = ∆𝑋1 ∆𝑡⁄ − 𝑏11∆𝑊 ∆𝑡⁄ . (8) 

Considering the availability of the ensemble, take ensemble 

mean to get 

𝐸𝑎11𝑋1 + 𝐸𝑎21𝑋2 = 𝐸(∆𝑋1 ∆𝑡⁄ ). (9) 

Subtracting (9) from (8), then multiplying by (𝑋1 − 𝐸𝑋1), 

and taking expectation, we get 
𝐸(𝑋1 − 𝐸𝑋1)(𝑋1 − 𝐸𝑋1)𝑎11 + 𝐸(𝑋1 − 𝐸𝑋1)(𝑋2 − 𝐸𝑋1)𝑎12 

= 𝐸(𝑋1 − 𝐸𝑋1)(∆𝑋1 − 𝐸∆𝑋1) ∆𝑡⁄ + 0. 

This is 

𝜎11𝑎11 + 𝜎12𝑎12 = 𝜎1,𝑑1, (10) 

where 𝜎𝑖𝑗  are covariances between 𝑋𝑖  and 𝑋𝑗 , and 𝜎𝑖,𝑑𝑗 

=𝐸(𝑋𝑖 − 𝐸𝑋𝑖)(∆𝑋𝑗 − 𝐸∆𝑋𝑗) ∆𝑡⁄ . Likewise, the difference 

between (8) and (9) multiplied by (𝑋2 − 𝐸𝑋2), followed by 

a mathematical expectation results in 

𝜎12𝑎11 + 𝜎22𝑎12 = 𝜎2,𝑑1, (11) 

(10) and (11) combined to give 

𝑎12 =
−𝜎12𝜎1,𝑑1 + 𝜎11𝜎2,𝑑1

𝜎11𝜎22 − 𝜎12
2 . (12) 

Substitute back to (7) and we get  

𝑇2→1 =
𝜎12

𝜎11

⋅
(−𝜎12𝜎1,𝑑1 + 𝜎11𝜎2,𝑑1)

(𝜎11𝜎22 − 𝜎12
2 )

. 
 

 

Q.E.D. 

 

In real applications, the population covariances need to be 

replaced with sample covariances. This results in a formula 

𝑇2→1 =
𝐶12(𝐶11𝐶2,𝑑1 − 𝐶12𝐶1,𝑑1)

𝐶11(𝐶11𝐶22 − 𝐶12𝐶12)
, (13) 

which is in a form precisely the same as (3), except that now 

the mean is ensemble mean at time t, not time average. Here 

𝑇2→1  is understood as an estimator, and should have been 

written 𝑇̂2→1, but for simplicity, the hat is dropped. Similarly, 

the IF from 𝑋1 to 𝑋2 is 

𝑇1→2 =
𝐶12(𝐶22𝐶1,𝑑2 − 𝐶12𝐶2,𝑑2)

𝐶22(𝐶11𝐶22 − 𝐶12𝐶12)
, (14) 

which is absolutely different from (13). This naturally 

indicates the direction of causality. If the absolute value of 

𝑇2→1 (|𝑇2→1|) passes the significance test, it is believed that 

𝑋2 is the cause of 𝑋1. Similarly, if |𝑇1→2| passes the test, 𝑋1 

is the cause of 𝑋2. 

 

When there are multiple time steps, say 𝐾 steps, (13) 

may be applied to each two adjacent time instances, and 

hence obtain (𝐾 − 1)  information flows, over which an 

average information flow result. We hence have the 

following algorithm.  

 

IV.  Validation 

A. A linear problem 

We first use a discretized version of (1) to generate a set of 

panel data. Assuming that 𝑭 and 𝑩 have the following form 

𝑭 = [
𝑎11𝑋1 + 𝑎21𝑋2

𝑎12𝑋1 + 𝑎22𝑋2
] = [

0.3𝑋1 + 0𝑋2

0.5𝑋1 + 0.7𝑋2
], 

𝑩 = [
0.4      0
0     0.5 

].  

Choose Δ𝑡 = 0.01, and hence Δ𝑊 = √Δ𝑡 𝑅𝒩, where 𝑅𝒩  is 

a random number satisfied the standard normally distribution. 

This forms a 2D autoregressive process. Clearly, 𝑋1 causes 

𝑋2, but not vice versa. This kind of problem is usually used 

to verify a causality analysis: One component causes another, 

but the latter does not cause the former. We initialize the 

system by making 10000 draws as follows: 

𝑋(𝑡 = 0) = {
𝑋1,𝑡=0 = 0.3 + 0.1𝑅𝒩

𝑋2,𝑡=0 = 0.4 + 0.1𝑅𝒩
. 

Fig. 1a shows that the initial distribution of 𝑋1  and 𝑋2 

roughly meet the normal distribution of: 

𝒩 ((
0.3
0.4

) , [0.12 0
0 0.12]). 

For each initial condition the system is integrated for 15,000 

steps, and the resulting 𝑋1  and 𝑋2  are recorded, and 

eventually form the ensemble. When 𝑡 = 150  (Fig. 1b), the 

distribution has been inclined along the direction of 𝑋2 = 𝑋1, 

which means that 𝑋1 and 𝑋2 are no longer independent. Fig. 

2 is a typical series with the initial condition of 𝑋1,𝑡=0 = 0.3 

and 𝑋2,𝑡=0 = 0.4. After t=10, the system reaches a quasi-

stationary state. We hence discard the segment 𝑡 < 10  in 

forming the panel data. 

According to the size of ensemble or number of 

individual units (𝑁), and temporal series (𝐾), panel data are 

Algorithm-IF: Information flow for homogeneous i.i.d. panel data 

Input: Panel data 𝑋𝑝1  and 𝑋𝑝2  with dimension 𝑁 × 𝐾 , where 𝑁  is the 

number of individual units and 𝐾 the time steps, every two adjacent steps 

separated by a time interval ∆𝑡. 

Step 1: Let 𝑋1, 𝑋2 and 𝑋̇1 be three empty 1D vectors. 

for 𝑖 = 1: 𝑁 

for 𝑗 = 2: 𝐾 

tmp =  (𝑋𝑝1(𝑖, 𝑗) −  𝑋𝑝1(𝑖, 𝑗 − 1))/∆𝑡); 

𝑋̇1 = [𝑋̇1; tmp];   
𝑋1    = [𝑋1 ;  𝑋𝑝1(𝑖, 𝑗 − 1)]; 

𝑋2    = [𝑋2 ; 𝑋𝑝2(𝑖, 𝑗 − 1)]; 

end 
end 

note: [𝐴; 𝐵]: concatenates 𝐵 vertically to the end of 𝐴. 

Step 2: Calculate the covariances: 𝐶11, 𝐶12, 𝐶22, 𝐶1,𝑑1 and 𝐶2,𝑑1 with 𝑋1, 

𝑋2, and 𝑋̇1. 

Step 3: Substitute the covariances into (13) and (14) to get the information 

flow from 𝑋2 to 𝑋1 (𝑇2→1) and that from 𝑋1 to 𝑋2 (𝑇1→2). 

Output：𝑇2→1, 𝑇1→2.  

 

 
Fig. 1. a) The initial distribution (blue spots) and the ensemble mean (red spot) 

of 𝑋1 and 𝑋2. b) The distribution of 𝑋1 and 𝑋2 at 𝑡 = 150 unit time. 
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generally divided into three categories: the ‘large 𝐾, small 𝑁’ 

temporal style long sequences; the ‘small 𝐾, large 𝑁’ panel 

literature, and the ‘large 𝐾, large 𝑁’ heterogenous panel data 

[4]. By the assumptions in Theorem III.1, here the 

heterogeneous case is excluded.  Based on this we henceforth 

generate three datasets, and respectively calculate the 

causalities between 𝑋1 and 𝑋2.  

 

 Case 1. The single pair time series case as studied in 

Liang (2014). Considers one realization over the period of 

𝑡 =  50 − 150 (steps from 5000 to 15000). The information 

flow is computed using (3). (Now Algorithm-IF boils down 

to this time series analysis case.) 

Case 2. Generate a total of 10000 pairs of 𝑋  at the 

section 𝑡 =  (100 − ∆𝑡)  and 𝑡 = 100 . Compute the 

information flow using Algorithm-IF. 

Case 3. Generate 100 pairs of 𝑋 over the period 𝑡 =
 (100 − 101∆𝑡) –  100 , for 100 steps with equal time 

stepsize ∆𝑡 . Compute the information flow using 

Algorithm-IF. 

 
TABLE 1 

 INFORMATION FLOWS COMPUTED WITH THE 7 SETS OF PANEL 

DATA AS GENERATED. 

 Case 1 Case 2 Case 3 

|𝑇2→1| 0.0176 0.0169 0.0110 

|𝑇1→2| 0.3501 0.2100 0.2996 

 

It is found that in all these cases, |𝑇1→2| is nearly an order 

of magnitude larger than |𝑇2→1|. Further, we adopted the same 

significance test as [14]. |𝑇1→2| in the 3 cases are all passes the 

99% significance test, while there are no cases that |𝑇2→1| 
passes even the 80% significance test. We remark that in Case 

1, using Algorithm-IF or (3) gives exactly the same result, 

indicating that time series data is just a particular case of panel 

data. By Table 1, Algorithm-IF for these panel data is robust. 

B. A highly nonlinear problem 

In deriving (13), a linear assumption is invoked. That is to 

say, strictly speaking, Algorithm-IF computes linear 

causality. Since (3) has been evidenced remarkably 

successful in highly nonlinear problems, we here test (13) 

and Algorithm-IF with such a dataset.  

The panel data set is generated with a one-way coupled 

anticipatory map. This is a highly chaotic system designed 

by Hahs and Pethel [28] which fails the existing causal 

inference techniques then: 

𝑋1(𝑡 + 1) = 𝑓(𝑋1(𝑡)), 

𝑋2(𝑡 + 1) = (1 − 𝜀)𝑓(𝑋2(𝑡)) + 𝜀𝑔𝛼(𝑋1(𝑡)), 
(14) 

where, 

𝑓(𝑥) = 4𝑥(1 − 𝑥), 
𝑔𝛼(𝑥) = (1 − 𝛼)𝑓(𝑥) + 𝛼𝑓2(𝑥), 

and 𝑓2  means that the logistic map 𝑓 applies twice, 𝛼 is a 

parameter called the “anticipation parameter”. Picking 𝜀 =
0.3, α = 0.8, an example series pair is shown in Fig. 3. From 

(14) obviously 𝑋1 causes 𝑋2, but not vice versa. However, 

Hahs and Pethel [28] showed that, with the existing 

technique, the causality thus inferred becomes widely off the 

track as α increases on 𝛼 ∈ [0,1]. When 𝛼 > 0.5, not only 

the computed causality from 𝑋2 to 𝑋1 becomes dominating 

that from the other way around. We hence generate some 

panel data sets with this touch-stone system to test our 

algorithm. The anticipation parameter 𝛼 takes value from 0 

to 1 every 0.1. Like the linear runs for each 𝛼, with the initial 

conditions as: 

𝑿(𝑡 = 0) = {
𝑋1 = 0.4(1 + 0.1𝑅𝒩)
𝑋2 = 0.1(1 + 0.1𝑅𝒩)

. 

For each group of runs, the system is iterated by 10,000 times, 

when the resulting 𝑋1  and 𝑋2  are recorded.We check three 

cases with this map: cases 4, 5, 6, which are the same as cases 

1, 2, 3, respectively, but with the nonlinear anticipatory system. 

The two time steps for case 5 are 9998 and 10000, respectively. 

Fig. 4 is the absolute value of the information flow (|T2→1| and 

|T1→2|) under the different cases and different anticipation 

parameters. The information flows with the panel data (no 

matter with large 𝑁 , small 𝐾  or the large 𝑁 , large 𝐾 ) are 

similar as the result of the time series information flow as 

obtained by Liang (2014). Most importantly,|T2→1| is very 

small throughout, though not exactly zero (perhaps due to the 

linear model used). Secondly, for 0 ≤ 𝛼 ≤ 0.3 or 0.8 ≤ 𝛼 ≤
1.0, |T1→2| is much larger than |T2→1|, indicating a one-way 

causality in a consistent way. This is in sharp contrast to the 

counterintuitive result of spurious causality as discovered by 

Hahs and Pethel [28]. 

When 0.4 ≤ 𝛼 ≤ 0.7, the information flow from 𝑋1 to 

𝑋2  is quite small. But even in such situations, the 

|T1→2|/|T2→1| in all the cases are all no less than 1.5, and, 

besides, T1→2  passes the 99% significance test, while T2→1 

does not pass the 95% significance test. In a word, though 

with a linear assumption, Algorithm-IF can capture the 

 
Fig. 2. A typical series generated by the 2D autoregressive process initialized 

with  𝑋1 = 0.3 and 𝑋2 = 0.4. 

 
Fig. 3. Time series for 𝛼 = 0.8 with the initial condition 𝑋1 = 0.4 and 𝑋2 =
0.1. 
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causality among an otherwise highly nonlinear panel dataset 

in a consistent way. 

 

V.  Real problem application 

So far panel data are mostly investigated in economics. For 

this reason, we apply Algorithm-IF to a problem on 

economy versus energy. Specifically, it is about the causal 

relationship between economic growth, trade openness and 

energy consumption, based on the data of 15 Asian countries 

(Pakistan, India, Bangladesh, Sri Lanka, Philippines, 

Thailand, Indonesia, China, Malaysia, Japan, Jordan, Iran, 

South Korea, Nepal and Vietnam) over the period of 1980–

2011. The problem has been studied by [29], hereafter NA14. 

They found a bi-directional causality among the above four 

factors (Table 7 in NA14). Here, we re-examine the problem 

with the above proposed new algorithm based on a 

rigorously developed theory.  

A detailed description of the data is referred to NA14. 

Briefly, energy consumption is measured by the Kg of oil 

equivalent per capita; economic growth is by real GDP per 

capita in constant international dollar; exports (US$) plus 

imports (US$) divided by population is used to measure trade 

openness; the price of Dubai crude oil (US$) deflated by the 

country's consumer price index (100 in the year of 2005) is 

used as a proxy for energy price due to the unavailability of 

energy price data. Data on energy consumption per capita, 

merchandise exports, merchandise imports, consumer price 

index and population are obtained from World Development 

Indicators (2013) of the World Bank. Data on real GDP per 

capita are collected from Penn World Tables Version 8.0 [30] 

and Dubai crude oil price data are taken from British 

Petroleum's 2013 statistical review of world energy[31]. 

We calculate the information flows/causalities among 

the four factors with our Algorithm-IF. Similar to the 

Granger causalities as computed in NA14, we regard the 

causality with a p-value of information flow less than 0.05, 

0.10, 0.15 as, respectively, strong, normal, and weak 

causality. The results are tabulated in Table 2, with 

information flows significant at an 85% confidence level 

blackened. For easy illustration, the causal relation is 

summarized in Fig. 5. From its economic growth and energy 

consumption are mutually causal, but the causality between 

economic growth and trade openness, and that between 

economic growth and energy price are one-way. Specifically, 

there is a strong bidirectional causality between economic 

growth and energy consumption, a strong unidirectional 

causality from trade openness to economic growth, and a 

weak unidirectional causality from energy price to economic 

growth. The first two are significant at a 99% confidence 

level; the third is significant at an 85% level. All other 

causalities (in total there could be 4 × 3 = 12 causalities) 

have not passed the significance test at the 85% confidence 

level, particularly, energy price (oil price) has no direct 

causal relationship with either energy consumption or trade 

openness, though it does exert a limited impact on the 

economic growth (significant at 85% confidence level; 

indicated by dashed line).  

The above inferred causal relations are evidenced by 

reports in the literature. First, the bidirectional causal 

relationship between energy consumption and economic 

growth has been discussed in many papers. Since the energy 

crisis in 1970s, many studies have confirmed the existence 

of such a causal relationship, e.g., [32]–[36], among others. 

Recently in some studies it is argued that no direct causal 

relationship between energy consumption and economic 

growth may exist [37]–[39]. Even this is true, most of such 

studies are based on the data from developed countries. For 

the 15 countries selected here, most are developing countries. 

The improvement of people's living standard is bound to the 

increase in energy consumption. Indeed, other studies based 

on  the data from South Asia[40], [41], Southeast and East 

Asia [42], [43] all attest to this mutual causal relation.

 
Fig. 4. The absolute value of IF (units: nats/unit time) from 𝑋1 to 𝑋2, |T1→2| 
(blue line) and that from 𝑋2 to 𝑋1, |T2→1| (red line) under different anticipation 

parameter 𝛼.  a) Case 4; b) Case 5; c) Case 6. The result here is in sharp 

contrast to the classical ones, in which  the red line dominates, as shown in 

Hahs and Pethel[28]. 

 
Fig. 5 Significant information flows among energy consumption, economic 
growth, trade openness and energy price. See the text for details. 
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For these 15 Asian countries, trade openness will not 

directly affect energy consumption; the converse does not 

hold, either. However, trade openness can affect the energy 

consumption by influence the economic growth. This is 

similar to the conclusion of Cole’s [44], who found that trade 

liberalization promotes economic growth, which then boosts 

energy demand. It is noted that these 15 countries, especially 

those from East Asia and Southeast Asia, and India, have 

taken over a large portion of the manufacture from Europe 

and the United States since the 1980s, promoting economic 

growth and henceforth energy consumption through the 

globalized industrial chain. A slightly counter intuitive 

finding is that no direct causality between oil price and 

energy consumption is identified. But with the unidirectional 

causal link from oil price to energy consumption, oil price 

can exert impact on energy consumption. This does make 

more sense than a direct causality from oil price to energy 

consumption---Based on our observation, we would not 

drive more just because gasoline becomes cheaper. For oil 

importing/exporting countries, the rise in oil price is 

negatively/positively correlated with economic growth [45]. 

By influencing the economic growth, oil price may affect 

energy consumption to a certain extent. Sarwar et. al. [46] 

point out that fluctuations in oil price will affect economic 

growth, but electricity consumption can compensate for this 

effect to a certain extent. This is also the possible reason why 

oil price has only a weak impact on economic growth. 

VI. CONCLUSION  

Since it was found that information flow (IF) and causality 

are real physical notions and can be formulated on a rigorous 

footing (see [12]), many efforts have been made to put it to 

application to the important field of causal inference in data 

science. In this study, we generalized the method for time 

series, as established by Liang [14], to causal inference for 

homogeneous and i.i.d. panel data. The generalization is 

mathematically rigorous but straightforward, and the 

resulting formula bear the same form as that for time series, 

though the meanings of the symbols differ. We then 

proposed an algorithm, Algorithm-IF, for homogeneous and 

i.i.d. panel data causality analysis. 

The algorithm has been validated with panel data sets 

from a linear stochastic model and a highly chaotic 

deterministic system. Three kinds of datasets, namely, time 

series, temporal style long sequences, and panel literature, 

have been generated and used for the validation. We found 

that in all these cases, the algorithm proves to be successful. 

Particularly, the performance with a touch-stone highly 

nonlinear problem proposed by Hahs and Pethel[28] turns 

out to be remarkably successful, though currently a linear 

assumption is made, in sharp contrast to the classical 

inference problem as discovered by Hahs and Pethel [28]. 

As a real-world application, we applied the algorithm 

to examine the causal relation among economic growth, 

energy consumption, trade openness, and energy price based 

on 15 Asian countries over the period 1980-2011. It is found 

that there are a strong bidirectional causality between 

economic growth and energy consumption, and a strong 

causality from import and export trade to economic growth. 

Energy price does not have a direct impact on energy 

consumption, but it does exert a limited effect on the latter 

through influencing economic growth. These inferred causal 

relations are rather robust, and have been well justified by 

previous studies and observations. 

Some issues remain. Recall the assumptions we have 

made in Theorem III.1, homogeneity and independence 

(and identical distribution). But a general panel dataset may 

be heterogeneous and may be subject to pervasive crosss-

sectional dependence. For heterogeneous panel data, where 

some individuals may be causal while others may not be (e.g., 

[47]), more than one dynamical system should be taken into 

account in arriving at the information flow. For panel data 

with cross-sectional dependence, whereby all units in the 

same cross-section are correlated due to, for instance, the 

presence of common shocks and unobserved components 

that have been taken as part of the error ([48], [49]), the 

problem becomes more severe. These issues, among others, 

are to be investigated in future studies. 
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