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R T I C L E I N F O

eywords:
uroshio Extension
bsolute instability
onvective instability

A B S T R A C T

Satellite observations have long revealed to us a spatially growing Kuroshio Extension (KEx), but
its underlying dynamics is yet to be studied. With a normal mode model of absolute/convective
instability, it is found that the mean zonal jet is unstable at all the sections in the downstream
region (east of 154 ◦E). In each of the resulting complex dispersion relation diagrams there
lies a single saddle point associated with a positive temporal growth rate; that is to say,
the mean jet is absolutely unstable, implying that KEx favors self-sustained oscillations. By
calculation the absolute instability wave has a period increasing from about 27 days to 72
days, and a slightly decreasing wavelength from 360 km to 250 km, as longitude increases
from 154 ◦E to 174 ◦E, agreeing with those inferred from the wavelet power spectra and
Hovmöller diagram of the satellite observations. As KEx travels downstream, the associated
eigen-structure of the perturbation velocity changes from a surface trapped mode to a mode
with components maximized in the vertical interior. This study shows that at least a portion
of the KEx intraseasonal variability is of intrinsic origin, and may be predictable with the
absolute/convective instability theory.

. Introduction

Kuroshio separates from the Japan Coast around (35◦N, 140◦E) and forms an eastward zonal jet, which eventually merges into
he North Pacific Ocean Circulation. The part between 140–160◦E is usually referred to as Kuroshio Extension, or KEx for short. KEx
as been of interest for decades because of its importance in oceanography, climate science, and other disciplines. It transports heat
nto the interior of the Pacific Ocean, impacting significantly the climate over the North Pacific (Latif and Barnett, 1994; Schneider
t al., 2002; Nakamura and Shimpo, 2004; Qiu et al., 2013; Wang and Liu, 2015; Wijffels et al., 1998). Its variability leads to the
eneration of mesoscale eddies, which are found to carry momentum and energy across the front, forming an important mechanism
f transporting heat from the Tropics to high latitudes. These eddies also redistribute local nutrients, and hence exert influence on
he local fishing grounds and ecosystems (Miller et al., 2004; Nishikawa and Yasuda, 2008, 2011; Sasai et al., 2010). For a recent
eview, see Kida and coauthors (2015).

KEx is highly variable; the variabilities form a broad spectrum (e.g., Mizuno and White, 1983), from submesoscale processes to
esoscale eddies, to decadal oscillations (e.g., Qiu, 2003) These variabilities may have different dynamical origins; differentiation

f their generating mechanisms thence has become an important research field in the KEx studies. Generally speaking, they may be
ither remotely driven or of local origin(s). In previous studies the external contribution has been considered to be more important;
articularly, many KEx variabilities have been related to the disturbances in the East Pacific Ocean and/or the wind stress anomalies
bove (e.g., Miller et al., 2004; Deser et al., 1999; Seager et al., 2001; Qiu, 2003; Kwon and Deser, 2007; Ceballos et al., 2009;
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Fig. 1. The 22-year mean SSH (in meters) of the KEx region with the AVISO daily data for the period 1993–2015 (www.aviso.altimetry.fr). The two black
dashed lines (resp. at 154◦E and 164◦E) will be used for spatial growth rate estimation.

Sasaki et al., 2012). Indeed, satellite observations seem to favor this opinion; the observed westward propagating Rossby waves
are manifestation (e.g., Chelton and Schlax, 1996). On the other hand, it has also long been argued that the internal processes
may be of equal importance (McCalpin and Haidvogel, 1996; Simonnet and Dijkstra, 2002; Hogg et al., 2005; Nonaka et al., 2006;
Primeau and Newman, 2008; Penduff et al., 2011; Pierini, 2006, 2014; Pierini et al., 2009), and, actually, more fundamental from
a viewpoint of geophysical fluid dynamics (Sasaki and Schneider, 2011). Moreover, some seemingly externally driven process may
turn out to be intrinsic if viewed in a larger system. For example, on a decadal time scale, the KEx oscillation has been shown to
be a self-sustained mode in an air–sea coupled model (Barnett et al., 1999; Qiu et al., 2013; Taguchi et al., 2010): An increase in
Kuroshio transport increases the sea surface temperature (SST) in the KEx region and hence decreases the meridional SST gradient,
which tends to reduce the global wind stress curl; the reduced wind stress curl then weakens the subtropical gyre, and hence reduces
the Kuroshio transport, leading to an oscillation on the decadal scale (e.g., Latif and Barnett, 1994)

A conspicuous phenomenon about the KEx variability is its spatial development as well as its temporal growth. The sequence of
the jet axis variation in Qiu and Chen (2010) provides a good illustration. From it one sees that, though differing year by year, the
KEx oscillations generally amplify downstream. This is also implied in the envelopes of the long term mean AVISO sea surface height
(SSH), as shown in Fig. 1. Dynamically this means that, in studying the instability problem, both temporal growth and spatial growth
should be taken into account. The underlying instability, if existing, may be either convective or absolute. Disturbances generated
from a convective instability will propagate away from their source(s); the system functions just like a noise amplifier. On the other
hand, an absolute instability will produce disturbances powerful enough to counteract the propagation and become stationary,
making the system a self-sustained oscillator. From a dynamical point of view, the latter is intrinsic and hence more fundamental.
Considering the KEx variability as shown in Fig. 1, it is natural to ask whether the system admits absolute instability, and, if so,
how frequency is selected. But, unfortunately, so far as of today these issues have been mostly overlooked.

We are therefore about to investigate the spatial development as well as the temporal growth, and accordingly the convective and
absolute instabilities, in the hope of singling out from the broad KEx spectrum some variabilities of intrinsic origin(s). In the following
we first formulate the problem, and give a brief introduction of the instability theory within the model framework. Section 3 presents
the analysis results, and Section 4 provides the evidence from observations. This study is concluded in Section 5.

2. Formulation of the KEx convective/absolute instability problem

Convective and absolute instabilities have been well studied in physics (particularly in plasma physics)(e.g., Briggs, 1964; Bers,
1975; Lifshitz and Pitaevskii, 1981) and hydrodynamics (e.g., Chomaz et al., 1988; Huerre and Monkewitz, 1990; Pier, 2008). In
oceanic and atmospheric dynamics, however, this is a relatively less explored field. Research works so far include Hogg (1976),
Thacker (1976), Merkine (1977), Ikeda and Apel (1981), Lindzen and Farrell (1983), Pierrehumbert (1984), Held et al. (1986),
Polvani and Pedlosky (1988), DelSole (1997), etc. Recently there have been an application to parameter tuning in numerical
modeling (Liang and Robinson, 2013), and an exploration of the connection to El Niño (Thual et al., 2013). In this section, we
first formulate the eigenvalue problem, then briefly introduce within the framework the basics about these instabilities.

Consider the primitive equation model that has been used in the Harvard Ocean Prediction System(cf. Robinson, 1999):

𝜕𝑢∗

𝜕𝑡
+ 𝑢∗ 𝜕𝑢

∗

𝜕𝑥
+ 𝑣∗ 𝜕𝑢

∗

𝜕𝑦
+𝑤∗ 𝜕𝑢∗

𝜕𝑧
− 𝑓𝑣∗ = − 1

𝜌0
𝜕𝑃 ∗

𝜕𝑥
+ 𝜈𝑀

𝜕2𝑢∗

𝜕𝑧2
+𝐾𝑀∇2𝑢∗ (1)

𝜕𝑣∗ + 𝑢∗ 𝜕𝑣
∗
+ 𝑣∗ 𝜕𝑣

∗
+𝑤∗ 𝜕𝑣∗ + 𝑓𝑢∗ = − 1 𝜕𝑃 ∗

+ 𝜈𝑀
𝜕2𝑣∗ +𝐾𝑀∇2𝑣∗ (2)
2

𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑧 𝜌0 𝜕𝑦 𝜕𝑧2

http://www.aviso.altimetry.fr
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𝜕𝑃 ∗

𝜕𝑧
= −𝜌∗𝑔 (3)

𝜕𝑢∗

𝜕𝑥
+ 𝜕𝑣∗

𝜕𝑦
+ 𝜕𝑤∗

𝜕𝑧
= 0 (4)

𝜕𝜌∗

𝜕𝑡
+ 𝑢∗

𝜕𝜌∗

𝜕𝑥
+ 𝑣∗

𝜕𝜌∗

𝜕𝑦
+𝑤∗ 𝜕𝜌∗

𝜕𝑧
+𝑤∗ 𝑑𝜌𝑠

𝑑𝑧
= 𝜈𝑇

𝜕2𝜌∗

𝜕𝑧2
+𝐾𝑇∇2𝜌∗, (5)

here all the state variables are starred for later convenience. Here 𝜌∗ is the density anomaly (𝜌𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 1000 kg/m3) with the
horizontally and temporally averaged profile 𝜌𝑠(𝑧) removed; 𝑥 directs eastward, 𝑦 northward, and 𝑧 upward; the subscripts 𝑇 and
𝑀 for the eddy viscosities stand for ‘‘tracer’’ and ‘‘momentum’’, respectively. The other notations are conventional and can be found
in standard geophysical fluid dynamics textbooks such as Pedlosky (1979).

Integrating the hydrostatic equation, one obtains

𝑃 ∗(𝑧) = 𝑃 ∗(−𝐻) + ∫

𝑧

−𝐻
(−𝜌∗𝑔)𝑑𝑧.

Here 𝑃 ∗(−𝐻) is the pressure at depth 𝐻 ; it may be taken as spatially invariant in many problems. This is actually what is done
in reduced gravity models, where the infinitely deep layer has a constant pressure. (With a finite flux, the infinite depth implies
a zero flow, and by geostrophy the pressure gradient must vanish.) In the KEx problem, provided that 𝐻 is large enough, this is
appropriate, as we will see soon in the next section, the jet is limited in the upper 1000 meters or so. Thus

∇𝑃 ∗ = −𝑔 ∫

𝑧

−𝐻
∇𝜌∗𝑑𝑧, (6)

where ∇ signifies horizontal gradient. Further assuming a rigid lid, which is appropriate in this context (e.g., Pedlosky, 1979), we
have

𝑤∗ = −∫

𝑧

0

(

𝜕𝑢∗

𝜕𝑥
+ 𝜕𝑣∗

𝜕𝑦

)

𝑑𝑧. (7)

he two substituted back to the primitive equations result in an integro-differential equation set with the three prognostic variables
𝑢∗, 𝑣∗, 𝜌∗). With appropriate boundary conditions, the equation set is closed and can be solved.

We want to study the behavior of the solution around some mean state (𝑢̄, 𝑣̄, 𝜌̄), which depends on (𝑦, 𝑧) only. A simpler
onfiguration but appropriate for the KEx study is

(𝑢̄, 𝑣̄, 𝜌̄) = (𝑢̄(𝑦, 𝑧), 0, 𝜌̄(𝑦, 𝑧)). (8)

his is justified by the relatively straight jet stream in question (observe the segment between the dashed lines in Fig. 1). The basic
rofile will be derived from the ‘‘Estimating the Circulation and Climate of the Ocean’’ dataset, which will be shown in Section 3.1.
otice that 𝑢̄ and 𝜌̄(𝑦, 𝑧) must meet some dynamical constraint(s); here it is the thermal wind relation.

Perturb the system from the mean state:

𝜌∗ = 𝜌̄ + 𝜌′,

𝑢∗ = 𝑢̄ + 𝑢′,

𝑣∗ = 𝑣̄ + 𝑣′ = 𝑣′.

inearizing, we get

𝜕𝑢′

𝜕𝑡
+ 𝑢̄ 𝜕𝑢

′

𝜕𝑥
+ 𝑣′ 𝜕𝑢̄

𝜕𝑦
− 𝜕𝑢̄

𝜕𝑧 ∫

𝑧

0

(

𝜕𝑢′

𝜕𝑥
+ 𝜕𝑣′

𝜕𝑦

)

𝑑𝑧 − 𝑓𝑣′ =
𝑔
𝜌0 ∫

𝑧

−𝐻

𝜕𝜌′

𝜕𝑥
𝑑𝑧 + 𝜈𝑀

𝜕2𝑢′

𝜕𝑧2
+𝐾𝑀∇2𝑢′ (9)

𝜕𝑣′

𝜕𝑡
+ 𝑢̄ 𝜕𝑣

′

𝜕𝑥
+ 𝑓𝑢′ =

𝑔
𝜌0 ∫

𝑧

−𝐻

𝜕𝜌′

𝜕𝑦
𝑑𝑧 + 𝜈𝑀

𝜕2𝑣′

𝜕𝑧2
+𝐾𝑀∇2𝑣′ (10)

𝜕𝜌′

𝜕𝑡
+ 𝑢̄

𝜕𝜌′

𝜕𝑥
+ 𝑣′

𝜕𝜌̄
𝜕𝑦

−
(

𝜕𝜌̄
𝜕𝑧

+
𝑑𝜌𝑠
𝑑𝑧

)

∫

𝑧

0

(

𝜕𝑢′

𝜕𝑥
+ 𝜕𝑣′

𝜕𝑦

)

𝑑𝑧 = 𝜈𝑇
𝜕2𝜌′

𝜕𝑧2
+𝐾𝑇∇2𝜌′ (11)

Assuming a solution of the form

(𝑢′, 𝑣′, 𝜌′) = (𝑢, 𝑣, 𝜌)𝑒𝑖(𝜎𝑡−𝑘𝑥), (12)

the above equations are reduced to:
(

𝜕𝑢̄
𝜕𝑦

− 𝑓
)

𝑣 + 𝜕𝑢̄
𝜕𝑧 ∫

𝑧

0

(

𝑖𝑘𝑢 − 𝜕𝑣
𝜕𝑦

)

𝑑𝑧

−𝐾𝑀
𝜕2𝑢
𝜕𝑦2

− 𝜈𝑀
𝜕2𝑢
𝜕𝑧2

+ 𝑖𝑘
𝑔
𝜌0 ∫

𝑧

−𝐻
𝜌𝑑𝑧

= −(𝑖𝜎 − 𝑖𝑘𝑢̄ + 𝑘2𝐾𝑀 )𝑢, (13)

𝑓𝑢 −𝐾𝑀
𝜕2𝑣
𝜕𝑦2

− 𝜈𝑀
𝜕2𝑣
𝜕𝑧2

−
𝑔
𝜌0 ∫

𝑧

−𝐻

𝜕𝜌
𝜕𝑦

𝑑𝑧

= −(𝑖𝜎 − 𝑖𝑘𝑢̄ + 𝑘2𝐾 )𝑣, (14)
3

𝑀
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𝜕𝜌̄
𝜕𝑦

𝑣 +
(

𝜕𝜌̄
𝜕𝑧

+
𝑑𝜌𝑠
𝑑𝑧

)

∫

𝑧

0

(

𝑖𝑘𝑢 − 𝜕𝑣
𝜕𝑦

)

𝑑𝑧

−𝐾𝑇
𝜕2𝜌
𝜕𝑦2

− 𝜈𝑇
𝜕2𝜌
𝜕𝑧2

= −(𝑖𝜎 − 𝑖𝑘𝑢̄ + 𝑘2𝐾𝑇 )𝜌. (15)

Here both 𝑘 and 𝜎 are complex:

𝑘 = 𝑘𝑟 + 𝑖𝑘𝑖, 𝜎 = 𝜎𝑟 + 𝑖𝜎𝑖.

Note in (12), the spatial growth rate (in positive 𝑥) is 𝑘𝑖, but the temporal growth rate is −𝜎𝑖. These equations, together with the
simple zero-gradient conditions for both vertical and horizontal boundaries:

𝜕𝑢
𝜕𝑧

, 𝜕𝑣
𝜕𝑧

,
𝜕𝜌
𝜕𝑧

= 0 at 𝑧 = 0, −𝐻 (16)

𝜕𝑢
𝜕𝑦

, 𝜕𝑣
𝜕𝑦

,
𝜕𝜌
𝜕𝑦

= 0 at 𝑦 boundaries (17)

(equivalent to no mass fluxes across the surface and bottom, and no wind forcing), form an eigenvalue problem. Here the 𝑦-
boundary conditions are justified by the observation that the jet flows mostly eastward. Particularly, if 𝑢̄ = constant, 𝐾𝑀 = 𝐾𝑇 ,
then (𝑖𝜎 − 𝑖𝑘𝑢̄ + 𝑘2𝐾𝑀 ) is the eigenvalue.

An observation about the system is that dissipation/diffusion (𝐾𝑀 or 𝐾𝑇 ) generally inhibits temporal growth, since for a real 𝑘,
𝑘2 is always positive, and hence 𝑘2𝐾𝑀 functions to inhibit the disturbance growth. However, when spatial growth is considered, 𝑘
has an imaginary part, 𝑘2𝐾𝑀 may become negative; that is to say, dissipation may trigger absolute instability. This is an interesting
topic which has been examined before (e.g., DelSole, 1997; Held et al., 1986; Polvani and Pedlosky, 1988).

In general, Eqs. (13)–(15) can only be solved numerically. We discretize them on a grid with uniform horizontal mesh and
variable spacings in 𝑧. The discretized equations admit nontrivial solutions only when 𝑘 and 𝜎 satisfies a dispersion relation. Details
of the discretization and solution for this study are deferred to Section 3.1. Here we symbolically write it as

ℒ (𝜎, 𝑘) = 0. (18)

This relation in spectral space corresponds to an integro-differential operator ℒ (−𝑖𝜕∕𝜕𝑡, 𝑖𝜕∕𝜕𝑥) in physical space. Let the eigenfunc-
tion of the perturbation fields (𝑢′, 𝑣′, 𝜌′) be 𝜙(𝑥, 𝑡). Then,

ℒ
(

−𝑖 𝜕
𝜕𝑡
, 𝑖 𝜕
𝜕𝑥

)

𝜙(𝑥, 𝑡) = 0. (19)

Now look at the response of the system to an impulse applied at the origin of the spacetime (𝑥, 𝑡), i.e., the Green’s function 𝐺(𝑥, 𝑡)
such that

ℒ
(

−𝑖 𝜕
𝜕𝑡
, 𝑖 𝜕
𝜕𝑥

)

𝐺(𝑥, 𝑡) = 𝛿(𝑥)𝛿(𝑡). (20)

The convective/absolute instability is defined with the behavior of 𝐺(𝑥, 𝑡); see, for example, Huerre and Monkewitz (1990).
Specifically, the background flow (8) is said to be linearly unstable if lim𝑡→∞ 𝐺(𝑥, 𝑡) = ∞ along at least one ray 𝑥∕𝑡 = constant;
otherwise it is linearly stable. For linearly unstable flows, two cases are distinguished along the particular ray 𝑥∕𝑡 = 0:

(1) lim
𝑡→∞

𝐺(𝑥, 𝑡) = 0;

(2) lim
𝑡→∞

𝐺(𝑥, 𝑡) = ∞.

In case (1), one observes at a fixed point (finite 𝑥) and finds that the disturbance gradually disappears; the disturbance is swept
downstream. This type of instability is said to be convective. On the other hand, the disturbance in case (2) keeps growing even
viewing from a fixed point. This type of instability is powerful enough to counteract the propagation and grow in all directions; it
is called absolute instability.

The above definition is straightforward. But practically it is difficult to use. In plasma physics, a common practice is to identify
the saddle point(s) as the spatial branches of the dispersion relation pinch on the complex 𝑘 plane (e.g., Briggs, 1964; Bers, 1975).
Details are referred to the comprehensive review Huerre and Monkewitz (1990) and other references such as Pierrehumbert (1984).
The following supplies a brief summary.

Observe that Eq. (20) actually can be solved. Application of a Fourier transform on both sides, followed by an inverse Fourier
transform, yields the Green function 𝐺(𝑥, 𝑡) in terms of a double Fourier integral

𝐺(𝑥, 𝑡) = 1
(2𝜋)2 ∫𝐾 ∫𝑆

𝑒𝑖(𝜎𝑡−𝑘𝑥)

ℒ (𝜎, 𝑘)
𝑑𝜎𝑑𝑘. (21)

The choice of the contours 𝑆 and 𝐾 will be clear soon. Notice the integrand is singular on the curve(s) of dispersion. Assume a
temporal mode 𝜎 = 𝜎(𝑘). By Cauchy’s residue theorem, the integral is

𝐺(𝑥, 𝑡) = − 𝑖 +∞ 𝑒𝑖(𝜎(𝑘)𝑡−𝑘𝑥) 𝑑𝑘, 𝑡 > 0. (22)
4
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As 𝑡 → ∞, this can be evaluated using the stationary phase approximation (e.g., Wong, 2001)

𝐺(𝑥, 𝑡) ≈ − 1
√

2𝜋
𝑒𝑖𝜋∕4 𝑒𝑖(𝜎(𝑘∗)𝑡−𝑘∗𝑥)

𝜕ℒ∕𝜕𝜎[𝑘∗, 𝜎(𝑘∗)]
√

𝜕2𝜎
𝜕𝑘2

(𝑘∗)𝑡
(23)

where 𝑘∗ is such that
𝜕𝜎
𝜕𝑘

|

|

|

|𝑘∗
= 𝑥

𝑡
. (24)

Following the peak of the wave packet, the maximal growth rate −𝜎𝑚,𝑖 is attained at 𝑘𝑚 such that
𝜕𝜎𝑖
𝜕𝑘

= 0, for 𝑘 real. (25)

From (24),
𝜕𝜎𝑟
𝜕𝑘

|

|

|

|𝑘𝑚
= 𝑥

𝑡
. (26)

That is to say, the peak of the most unstable wave packet moves at the group velocity at that wavenumber, i.e., 𝑘max.
For linearly unstable flow, we further look at its behavior at some fixed finite 𝑥 as 𝑡 → ∞. We are particularly interested in the

avenumber 𝑘0 such that
𝜕𝜎
𝜕𝑘

|

|

|

|𝑘0
= 0, as 𝑥∕𝑡 → 0. (27)

orrespondingly let the frequency be 𝜎0. We then have the following criterion:

• The basic flow is linearly unstable if −𝜎𝑚,𝑖 > 0;
• for linearly unstable flow, if −𝜎0,𝑖 > 0, it is absolutely unstable; otherwise it is convectively unstable.

ote that −𝜎0,𝑖 ≤ −𝜎𝑚,𝑖, as established before (see references in Huerre and Monkewitz, 1990).
It has been shown that, in the 𝜎-plane, the absolute frequency 𝜎0 is an algebraic branch point of 𝑘(𝜎), while in the 𝑘-plane, 𝑘0 is

saddle point (e.g., Huerre and Monkewitz, 1990). This provides an easy way to identify absolute instability, which is credited to
riggs (1964). For the purpose of illustration, suppose that 𝜎 = 𝜎(𝑘) is a quadratic function in 𝑘. Thus there are two spatial branches;
all them 𝑘+(𝜎) and 𝑘−(𝜎), as sketched in Fig. 2. Let us go back to (21). The paths 𝑆 and 𝐾 cannot be just chosen arbitrarily. 𝑆 is
contour parallel to the 𝜎𝑟 axis. It must be above all the singularities of the integrand to meet the causality requirement, that is,
= 0 when 𝑡 < 0. Correspondingly 𝐾 takes a path initially coincident with the real axis in the complex 𝑘-plane. As 𝑆 is displaced

ownward, the spatial branches are getting closer; particularly, 𝑘+(𝜎) or 𝑘−(𝜎) may cross the 𝑘𝑟 axis. 𝐾 must then be deformed to
void trespassing the spatial branches. As 𝑘+ and 𝑘− are pinching they will eventually meet, say, at 𝑘0, a saddle point where 𝐾
asses. Correspondingly on the 𝜎-plane 𝜎(𝑘) also varies; it takes a cusp form at 𝜎0, the point where 𝑆 stops. The imaginary part
f 𝜎0 is the very 𝜎0,𝑖 as discussed above for distinguishing convective and absolute instabilities. As an example, in the schematic
𝜎0,𝑖 > 0, so the flow is absolutely unstable. Furthermore, 𝑘0,𝑖 > 0; it thus amplifies toward the positive direction of 𝑥.

. Temporal and spatial growths in the KEx region

.1. Data and basic flow

We use for the analysis the data from the Estimating the Circulation and Climate of the Ocean (ECCO) group (www.ecco-group.org).
he reason to choose it is because of its dynamical consistency in the course of integration, which is of essence for our study. The
ime period is from January 1, 1993, to December 31, 2014, with a resolution of 1 day. Average the fields over the period to obtain
he mean profiles. In the vertical direction, the data are interpolated to the following 12 depths (in m): 50, 150, 250, 350, 450, 550,
50, 750, 850, 950, 1060, 1200. We use a grid with a uniform mesh in 𝑦 but with variable spacings in 𝑧, and hence this results in
0 vertical spacings (𝛥𝑧) of 100 m, plus two bottom spacings of 120 m and 160 m. (Note the depths should be carefully chosen, or
he nonuniform mesh grid in 𝑧 may result in negative 𝛥𝑧’s.) The bottom level at 1200 m is deep enough to have 𝑢̄ nearly vanishing
cf. Fig. 3), meeting the assumption of an inert bottom layer for the model.

Meridionally the domain is between 29.625–40.125◦N, with a spacing of 0.5◦. The non-integer latitudes coincide with the original
ata points. From Fig. 1, the KEx axis west of 150◦E is not straight, which is beyond the capability of the present model. Thus, only
he eastern part is considered for this study. Particularly we will focus our attention between 154–164◦E, as from the figure even
he segment between 150–155◦E is much influenced by the meandering. In Fig. 3 the profiles of 𝜌̄(𝑦, 𝑧) and 𝑢̄(𝑦, 𝑧) at 154◦E are
hown. Note that the resulting 𝜌̄ may not be consistent with 𝑢̄. We hence recompute 𝜌̄ from 𝑢̄ using the thermal wind relation. The
ntegration is from the southernmost boundary, where 𝜌̄ is prescribed. The re-computed or rectified 𝜌̄ is drawn in Fig. 3c. As can be
een, the two are essentially the same, though little difference does exist in regions of large |𝜕𝑢̄∕𝜕𝑦|.

We have drawn the mean profiles every two degrees eastward from 150◦E; they only vary on a large scale. For example, Fig. 4
ives the profiles at 164◦E.

Before proceeding, the two parameters in the model, namely, 𝜈𝑀 and 𝐾𝑀 , need to be set. (𝜈𝑇 and 𝐾𝑇 are chosen to be the
5

ame as, respectively, 𝜈𝑀 and 𝐾𝑀 .) It is found that a reasonable 𝜈𝑀 essentially has no affect on the result; we choose it to be
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Fig. 2. A schematic of the pinching process on the complex 𝑘-plane (right panel) as the contour 𝐿 is displaced downward in the complex 𝜎-plane (left panel).
Note the ordinate of the 𝜎-plane is −𝜎𝑖, which is the temporal growth rate by (12). See Huerre and Monkewitz (1990) for more details.

Fig. 3. Basic profiles for the instability model at 154◦E: (a) 𝑢̄ (in m/s), (b) 𝜌̄ (density anomaly), (c) density anomaly in conformity with 𝑢̄ through thermal wind
relation.

𝜈𝑀 = 5 × 10−4 m2/s. As we mentioned in the preceding section, 𝐾𝑀 generally will inhibit the temporal growth. In this study,
we find that, provided that 𝐾𝑀 is not extremely large, it only slightly affects the growth rates (no qualitative change), with little
influence on the wave properties. In the following presentation a relatively weak dissipation 𝐾𝑀 = 100 m2/s is chosen.

The above discretized system is solved by calling the LINPACK Fortran library (http://www.netlib.org/linpack/). As shown in
Section 2, given a 𝑘, we can obtain a list of ordered eigenvalues. The one that maximizes the temporal growth rate is kept, and its
corresponding eigenvector saved. By varying 𝑘, the dispersion relation is hence obtained.

3.2. Dispersion relation

From 150◦E eastward till 174◦E, we have performed the instability analysis for sections every 2◦ longitude, which totals 13
sections. Here we select out a couple of typical sections to illustrate.
6

http://www.netlib.org/linpack/


Dynamics of Atmospheres and Oceans 93 (2021) 101205X.S. Liang and J. Hu
Fig. 4. As Fig. 3, but for 164◦E.

3.2.1. Section at 154◦E
Eqs. (13)–(15) together with the boundary conditions are solved for the dispersion relation. The growth rate −𝜎𝑖 as a function

of 𝑘𝑟 is plotted in Fig. 5a. We see that it has two maxima for 𝑘𝑟 > 0, and there are another two for negative 𝑘𝑟 values located
symmetrically about 𝑘𝑟 = 0. From the figure, −𝜎𝑚,𝑖 = 6.2× 10−7 > 0; the flow is hence locally unstable in the linear sense. In Fig. 5b,
the branches of −𝜎0,𝑖 = 6.012×10−7 pinch at the saddle point 𝑘 = (±1.75×10−5, 1.25×10−7). Since −𝜎0,𝑖 > 0, the instability is absolute.

The absolute instability wave has a frequency ∼ 2.65 × 10−6, which is approximately 27 days. The wave may propagate in both
+𝑥 and −𝑥 directions, with a wavelength of 2𝜋∕1.75 × 10−5∕1000 ≈ 360 km. It is spatially amplifying toward +𝑥 direction, with a
spatial growth rate of 1.25 × 10−7 m−1.

3.2.2. Sections at 164◦E and further downstream
For the section at 164◦E, the dispersion structure has changed a little bit from the above. Fig. 6a shows the distribution of

−𝜎𝑖 with 𝑘𝑟. Compared with Fig. 5a, still there exist two symmetric maxima, but the third and fourth maxima disappear. Since
−𝜎𝑚,𝑖 = 2.58 × 10−7 > 0, the basic flow at this longitude is also linearly unstable. From Fig. 6b we see that the two branches of
−𝜎0,𝑖 = 2.537 × 10−7 pinch at

𝑘 = (𝑘𝑟, 𝑘𝑖) = (±1.75 × 10−5, 0.5 × 10−7) m−1.

This is the saddle point we are interested in, which corresponds to the temporal mode 𝜎0. Since −𝜎0,𝑖 > 0, this is also an absolute
instability.

Again the absolute instability wave may propagate in both direction. It has a wavelength of 2𝜋∕1.75 × 10−5∕1000 = 360 km,
and a spatial growth rate of 0.5 × 10−7 m−1. The real part of 𝜎0, i.e., 𝜎0,𝑟, is by calculation 1.269 × 10−6 s−1, which approximately
corresponds to 57 days.

For sections further downstream, they are actually not KEx any more. We have examined several of them for comparison
purposes. Generally, the dispersion relation seems to be qualitatively similar to that at 164◦E; all admit absolute instabilities. For
example, the section at 174◦E has a dispersion curve similar to Fig. 6, save for a much smaller growth rate. To summarize, Table 1
lists the computed properties for different sections. Note that the results for the two sections at 150◦E and 174◦E may not be accurate
enough. The former is close to a meandering jet. The latter has a broad jet, part of which already touches the computational domain.

3.3. Eigenfunction

Associated with the absolutely unstable modes are the eigenvectors. Contoured in Fig. 7 are the corresponding perturbation
fields of 𝑢, 𝑣, and 𝜌 at 154◦E. Generally speaking, they are trapped in upper layers, though the real part of 𝜌 may extend to a
depth of 1100 m. An observation is that, while the velocity perturbation tends to be surface intensified, the density fluctuation has
a double-maximum structure. Aside from the surface maximum, between 200 m and 400 m there exists a second one, which is
obvious on both the real and imaginary distributions of 𝜌 (Fig. 7c and f).
7
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Fig. 5. Dispersion relation for section 154◦E. (a) The temporal growth rate as function of real 𝑘. (b) The pinching of the two branches of −𝜎𝑖 = 6.012× 10−7 s−1.

Table 1
Computed properties for the local absolute instability waves.

Longitude Wavelength (km) Period (days) Spatial growth rate (m−1) Temporal growth rate (s−1)

150◦E 360 23 1.5 × 10−7 7.1 × 10−7

154◦E 360 27 1.25 × 10−7 6.012 × 10−7

164◦E 360 57 0.5 × 10−7 2.537 × 10−7

174◦E 251 72 0.25 × 10−7 1.66 × 10−7

The unstable model at 164◦E displays a quite different vertical structure. As seen from Fig. 8, the perturbations are not all
rapped in upper layers. The real part of 𝑢 and the imaginary part of 𝑣 are mainly distributed between 300 m and 1000 m. Besides,
he latitudinal structure is also different. For example, in Fig. 7c and f, 𝜌 somehow has a solitary wave structure, but Fig. 8c and f

show a structure with one or two peak(s) and one valley in 𝑦. Similar difference is also seen between the 𝑢𝑖’s at the two sections
(Figs. 7d and 8d).

In Fig. 8, it is seen that, in terms of vertical structure, 𝑢𝑟 is related to 𝑣𝑖, and so is 𝑢𝑖 to 𝑣𝑟. This is a manifestation of geostrophic
balance, which reduces the continuity equation to

−𝑖𝑘𝑢 + 𝜕𝑣
𝜕𝑦

= 0

in the present context. Thus a surface-trapped 𝑅𝑒{𝑢} corresponds to a surface-trapped 𝐼𝑚{𝑣}, while an interior mode of 𝐼𝑚{𝑢}
orresponds to an interior mode of 𝑅𝑒{𝑣}.

. Observational evidence

The absolute instabilities actually are evidenced in observations. In this section we look at the AVISO daily SSH series, which
re available at www.aviso.altimetry.fr.
8
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Fig. 6. Dispersion relation at 164◦E. (a) The temporal growth rate as function of real 𝑘. (b) The pinching of the two branches of −𝜎𝑖 = 2.53 × 10−7 s−1.

.1. Data pretreatment

The AVISO daily data are available from January 1, 1993, to present. As detailed in the following, the series should have a
ength of the power of 2, so we choose 213 = 8192 days starting from 01/01/1993, which result in a series ending in June 2015.
n order to enhance the variabilities that interest us, the series are pretreated with the mean, linear trend, and annual variabilities
emoved.

.2. Hovmöller diagram

Hovmöller diagrams are conventionally used to infer wave properties. We now examine the Hovmöller diagram of the fluctuations
long the KEx axis. For this purpose, we first need to single out the processes with periods approximately between 30–70 days. This
s achieved with the new machinery multiscale window transform (MWT) developed by Liang and Anderson (2007).

MWT is a functional analysis tool which decomposes a function space into a direct sum of orthogonal subspaces, each with an
xclusive range of scales, while preserving its local properties. Such a subspace is termed a scale window, or simply a window. MWT
s originally developed for a faithful representation of the multiscale energies (or any quadratic properties) on the resulting scale
indows, and hence make multiscale energetics analysis possible. This is a feature lacked in the traditional filters, the outputs of
hich are fields in physical space, while multiscale energy is a concept in phase space which is connected to its physical space

ounterpart through the Parseval equality in functional analysis. Liang and Anderson (2007) realized that, just as the Fourier
ransform and inverse Fourier transform, there exists a transfer-reconstruction pair for a subclass of specially devised orthogonal
ilters. This motivates the introduction of MWT and its counterpart, multiscale window reconstruction (MWR). MWT/MWR and
rthonormal wavelet transform are all based on multi-resolution analysis, but they are different by construction. MWR functions
ike a filter, while MWT outputs transform coefficients which can be combined into the different multiscale energetic terms.

In MWT/MWR, the scale windows are demarcated by scale level bounds. For a series with a time span of 𝜏, a scale level 𝑗
orresponds to a period 2−𝑗𝜏. The time steps of the series hence need to total to a number of the power of 2. As said above, the
9
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Fig. 7. Eigenfunction of the absolutely unstable mode at 154◦E.

Fig. 8. Eigenfunction of the absolutely unstable mode at 164◦E.
10
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Fig. 9. The Hovmöller diagram of fluctuations on scale window (a) 𝑗 = 7 − 8 and (b) 𝑗 = 4 − 6.

AVISO series are chosen to have 213 = 8192 data points (days). Considering that the periods are around 30–70 days, we choose a
window with scale level bounds 𝑗 = 7 − 8 (corresponding to 64 and 32 days) and perform the multiscale window reconstruction.
For easy reference, this window will be referred to as the absolute instability window henceforth.

From Fig. 1, the KEx axis in this region is at about 33◦N. We choose 33.125◦N, the nearest latitude where the AVISO daily
data are available, to perform the reconstruction. We then draw the Hovmöller diagram of the reconstructed SSH for the period
01/01/1993–12/31/2015. Fig. 9 is a zoom of the diagram for 2007–2015.

It has long been observed that disturbances in North Pacific propagate westward in the form of Rossby waves; see, for example,
Chelton and Schlax (1996). We have checked this with fluctuations reconstructed on scale windows larger than the absolute
instability window, and things are indeed like that; Fig. 9b gives an example with 𝑗 = 4−6 (corresponding to 1.4 year-4.2 months).
However, on the absolute instability window (𝑗 = 7−8), a quite different scenario appears. In Fig. 9a, the propagation is not always
westward. In many time periods, e.g., 2009, 2010–2011, 2013–2014, the waves may become stationary. This is the very indication
of the absolute instability. Besides, there may even exist eastward propagations in Fig. 9a, agreeing with our model result that the
instability waves may propagate in both directions.

4.3. Spatial growth rate and spatial scale

Originally it is the spatial growth that motivates this research. Let us see how it may be compared to the instability model
prediction. Here we only look at the downstream region, since the upstream KEx variability is much influenced by the large
meandering, which is beyond the capability of the present model. As marked in Fig. 1, choose the two contour lines 0.6 and
1.2. The two dashed lines, respectively located at 154◦E and 164◦E, are separated by 10◦ or 920 km at that latitude. The right
line is roughly 1.1 times the left one. Let the growth rate be 𝜆, then 𝑑𝑦

𝑑𝑥 = 𝜆𝑦, 𝑦
𝑦0

= 𝑒𝜆𝛥𝑥. As 𝑦∕𝑦0 ≈ 1.1, 𝛥𝑥 = 9.2 × 105 m,
𝜆 = log𝑒 1.1∕𝛥𝑥 = 1.04 × 10−7 m−1. This value lies between the spatial growth rates at 154◦E (𝑘𝑖 = 1.25 × 10−7 m−1) and 164◦E
(0.5 × 10−7 m−1) as predicted by the instability model; it is very close to the former.

A property that is suitable for visual inspection is the eddy size. But here it is not an easy task to extract the information for an
objective comparison. The reason is that, in the scale window of concern, the processes need not all be instabilities waves; other
waves/eddies may also live in there.

Using the SSH fluctuations reconstructed above, we look at their Fourier spectrum along the KEx axis (between 150◦E and
180◦E). The spectrum is found to vary from time to time. Fig. 10 shows the variation during 2000–2015. Indeed, in this window
there exist processes with very long spatial scales. But generally there is another peak, varying from 𝑘∕2𝜋 = 0.001 (1000 km) to
0.003 (333 km). The long-time mean is approximately at 0.0015–0.00175 (570–670 km), which is much larger than that by model
11
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Fig. 10. The Fourier spectrum of the AVISO SSH along 33.125◦N during 2000–2015.

prediction. However, there do exist periods when the second peak is placed at larger wavenumbers. By visual inspection a very
clear peak around 2010 is between 0.0025–0.003, which corresponds to a spatial scale between 330–400 km. This is in agreement
with the model prediction, i.e., 360 km.

To aid the visualization, we draw in Fig. 11a the horizontal distribution of a typical reconstructed SSH during this period: the
distribution on the Christmas Day of 2010. By comparison both the amplitude and scale of the eddies are much smaller in the eastern
region. While the amplitude distribution cannot be inferred with a linear wave theory, the spatial scale distribution does agree with
our previous prediction, which gives a smaller wavelength in the east. To see it more clearly, we zoom in on the enhanced eddy
region and plot it in Fig. 11b. The dipole in the east provides a nice paradigm for a wave. It straddles over about 4 longitudes, or
4 × 𝜋∕180 × 6370 × cos 35◦ ≈ 364 km. This is almost the same as the 360 km as previously predicted for that longitudinal range.

4.4. Wavelet power spectra

Evidence also exists in power spectra. We pick out three longitudes: 154◦E, 164◦E, and 174◦E on the above latitude 33.125◦N to
form three time series, and check the respective power spectra. The spectral analysis is with the orthonormalized wavelet basis built
in (Liang and Anderson, 2007). (We have also performed a Fourier analysis but the signal is not conspicuous.) We here emphasize
orthonormality since only with orthogonal basis can multiscale energy be faithfully defined; the ‘‘energy’’ with a nonorthogonal basis
is not physically consistent in that it does not sum over scale levels to the energy in physical space. This is because the required
Parseval relation holds only for orthogonal bases.

The resulting spectra are plotted in Fig. 12. For easy reference, the scale level 𝑗 = 8 (32 days) is marked in white in the subplots.
From the figure the 154◦E series is by far the most energetic. It has a broad spectrum: Energy peaks exist from 𝑗 = 1 (∼11 years) to
= 8.5 (∼22 days) (recall the mean has been removed). The 𝑗 = 1 or decadal oscillation is a well studied feature; it has attracted
uch interest ever since a long time ago (e.g., Latif and Barnett, 1994; Schneider et al., 2002; Qiu et al., 2013; Taguchi et al., 2010;
ierini, 2014). Remarkably, a substantial portion of variabilities on intraseasonal scales have an energy density comparable to that
f the decadal oscillation. The highest scale levels (up to 𝑗 = 8.5 or 22 days) are consistent with results with the absolute instability
odel (23–27 days; see Table 1).

The other two series have much narrower spectra. In the 164◦E spectrum, the highest scale levels for the most energetic
ariabilities are below 8, and on average they are at about 7.5 (about 45 days). In the 174◦E one, they are located even lower,
pproximately at 6.8 (about 74 days). This is in contrast to that in the 154◦E spectrum, where most of the highest levels are above 8.
hat is to say, in the power spectrum the smallest scale of the energetic intraseasonal variabilities increases eastward with longitude.
his is consistent with the results in Table 1. Besides, the corresponding scales agree well with periods of the corresponding local
bsolute instability waves, except for the 164◦E section, where some discrepancy exists.

A conspicuous feature in all the three spectra is the significant part of energy at the highest scale levels or smallest scales,
.e., one day or two; more conspicuously is the big gap between it and that for the intraseasonal processes. Considering that KEx is
ust below the Pacific storm track, this could be due to the synoptic storms. However, storms have a life cycle of a week or so, while
hese variabilities have a scale much shorter. Other possibilities include tides, inertial gravity waves, or submesoscale processes
McWilliams, 2016), etc. Whether this is true and how this may function deserve a careful study in the future.
12
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Fig. 11. Reconstructed SSH on the absolute instability window (𝑗 = 7–8). (b) is a zoom of (a) on the enhanced eddy region. The units are in meters.

Fig. 12. Wavelet power spectra of the AVISO SSH series at (154◦E, 33.125◦N), (164◦E, 33.125◦N), and (174◦E, 33.125◦N). Shown is the logarithm of the energy
in the time-scale domain. The analysis is with an orthonormal wavelet basis generated in Liang and Anderson (2007). The white line marks the scale level 8
(32 days). The mean and annual cycle have been removed from the series prior to the analysis.
13
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5. Discussion and conclusions

Satellite observations have long revealed to us a spatially developing Kuroshio Extension (KEx). However, the underlying
onvective and absolute instabilities and their associated properties have been mostly overlooked. In this study, we constructed
normal mode instability model to address this issue. We chose a domain east of 150◦E, particularly a domain between 154–

164◦E, to avoid the meandering mean axis in the upstream. Sections at three longitudes are particularly paid attention to: 154◦E,
164◦E, and 174◦E. We used the ECCO data to form the corresponding basic flow profiles. It is found that the basic flow is unstable
at these sections, and is all absolutely unstable. In each of the resulting complex dispersion relation diagrams there lies a single
saddle point associated with a positive temporal growth rate, which implies self-sustained oscillations. By calculation the absolute
instability wave has a frequency decreasing eastward with longitude (corresponding to an increasing period from about 27 days to
72 days), and a slightly increasing wavenumber (corresponding to an slightly decreasing wavelength from 360 km to 250 km). As
KEx travels downstream, the associated eigen-structure of the perturbation velocity changes from a surface trapped mode to a mode
with components trapped in the vertical interior.

The above absolute instability modes have been evidenced in the wavelet power spectra and multiscale window reconstructions of
the AVISO daily SSH data along the KEx axis. In the spectra, it is found that there is substantial energy on the intraseasonal scales and
the energy density is comparable to that on larger scales (up to the decadal scale). At least a portion of these variabilities, particularly
those on the highest frequencies on this scale window, reveal distinctly different propagation properties from those on larger scales.
On the Hovmöller diagram, the fluctuations may appear in the form of stationary waves, or even propagate eastward (rather than
westward like Rossby waves). This is the very indication of the absolute instability waves. Besides, the highest frequencies on the
window agree with the scales as predicted with the instability model (resp. ∼27, 57, 72 days). The observed typical wavelength
(∼364 km) in some pronounced disturbance region is also comparable to the computed 360 km for that region. We may therefore
safely say that this portion of intraseasonal variabilities are generated through absolute instabilities.

Several issues remain. First the meandering axis of the upstream KEx must have large impact on the instability properties.
This, however, may preclude a simple basic geostrophic flow and hence introduce, in addition to the complexity of the equations
themselves, much difficulty to the instability analysis. As a first step, the present model chooses to avoid this effect, but a
sophisticated KEx instability model should eventually take this into account.

An observation is that the frequency of the absolute instability mode increases eastward, while from the Hovmöller diagram
the perturbation amplitude decreases with longitude. Does amplitude vary with frequency here? A linear theory cannot tell how
amplitude varies—amplitude is determined by initial conditions. But, in this case, is it possible that it be the zonal structure of a
global mode? If so, then how frequency is selected with the global mode? Does the selection rely on the local absolute instability
structures? These questions, among others, are essentially about how locally unstable flows may give rise to globally instabilities,
and for sure deserve a careful investigation. Indeed, the stream here looks like globally unstable. This means it has a finite region of
absolute instability (cf. Table 1). In this scenario, by Huerre and Monkewitz (1990), the globally unstable frequency (and complex
wave number) is the one measured at the streamwise location, say 𝑥0, where the temporal growth attains its maximum, i.e., where
𝑑(−𝜎𝑖)
𝑑𝑥

|

|

|𝑥=𝑥0
= 0. By Table 1, this is likely to occur west of the domain under consideration, i.e., in a region where the Kuroshio

Extension meanders. So, again, the investigation cannot proceed without taking in account the meandering axis in the upstream.
We look forward to a detailed study in the near future.
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