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ABSTRACT Panel data, which consist of observations on many individual units over two or more instances
of time, have gradually become an important type of scientific data. Subsequently causal inference for panel
data has attracted enormous interest from many fields as well as statistics. In this study, the rigorously
formulated information flow analysis for time series, which is very concise in form and has been successfully
applied in different disciplines, is generalized to identify the causality from homogeneous and independent
identically distributed panel data. The resulting formula bears the same form as that for the former, though
the meanings of the symbols differ. An algorithm is then proposed for panel data causality analysis, which
has been validated with both linear and nonlinear problems. It has also been put to application to examine
the causal relations among economic growth, energy consumption, trade openness, and energy price based
on 15 Asian countries. Clearly identified are a strong bidirectional causality between economic growth and
energy consumption, and a strong causality from import and export trade to economic growth. Energy price
has no direct impact on energy consumption; it, instead, exerts a weak effect on the latter through influencing
economic growth.

INDEX TERMS Panel data, information flow, causality, economy, energy.

I. INTRODUCTION
In the past two decades, data have been accumulated at an
exponential rate in essentially all fields, partly due to the
easy access to social media and the interconnectivity of our
society [1]. How to mine the causal information from the
different datasets hence becomes a hot issue in the digi-
tized society [2]. One direct way is to identify the causal
possible relations. Unfortunately, causal inference is a very
challenging problem. So far as of today, the methodologies
for identifying causality are yet to be improved [3].

Most of the data can be classified into three categories:
temporal data, cross-sectional data, and panel data. A set of
temporal data or time series is a series of data points indexed
(or listed or graphed) in time order. Differently, data collected
by observing many individuals at the one instance of time is
termed cross-sectional. Time series and cross-sectional data
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can be thought of as special cases of panel data, which consist
of observations on many individual units over two or more
periods of time. There are several important advantages of
panel data comparing to data sets with only a temporal (time
series) or individual (cross section) dimension [4], one being
the ability to control for possibly correlated, time-invariant
heterogeneity without actually observing it. Besides, panel
data can reduce the collinearity among explanatory variables,
increase in efficiency of estimators, and alleviate problems of
aggregation.

Several methods have been proposed to make causal infer-
ence with panel data, among which the most popular one is
Granger causality analysis, which is based on the idea that
the cause occurs before the effect, hence if an event X is the
cause of another event Y , then X should proceed Y [5]. (This
basis, however, is recently challenged by an observation with
a purported generated dynamical system with synchroniza-
tion; see [6]). For example, Holtz-Eakin et al. [7] consid-
ered estimation and testing of vector autoregression (VAR)
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coefficients in panel data to calculate the Granger causal-
ity, and applied the techniques to analyze the dynamic rela-
tionships between wages and hours worked in two samples
of American males. The same method was used by [8] to
report the findings on the relationship between foreign direct
investment and pollution across 112 countries over 15–28
years. Kónya [9] used the Panel-Data Granger causality test
approach based on bootstrap and studied the relationship
between exports and economic growth in OECD countries.
Similar approach was adopted by Bedir and Yilmaz [10] to
examine the causal relation between the logarithms of the
human development index and CO2 emissions in 33 organi-
zations for economic cooperation and development countries.
Gupta and Singh [11] employed the Johansen cointegra-
tion technique followed by vector error correction model
(VECM) and standard Granger causality test to investigate
the causal linkage between FDI and GDP of BRICS nations.
These applications are generally successful in their respective
contexts.

Despite these studies, the causality analysis for panel data
is still in its early stage of development. Both theoretically
and practically there still exist much room for improvement.
Recently, it has been realized that causality and information
flow (IF) are real physical notions and hence can be put
on a rigorous footing. In other words, they can be derived
from first principles in physics [12], rather than axiomatically
proposed as an ansatz.

Effort along this line can be traced back to the early work
by Liang and Kleeman [13] on IF, but its ability has just been
recognized with the publication of the time series study by
Liang [14], where it is shown that causality can be assessed
in a very easy way, with only sample covariances involved.
The resulting formula, albeit simple, proves to be remarkably
successful in solving many problems which defy the tradi-
tional approaches. It also fixes the philosophical debate on
causation versus correlation (cf. section 2). Ever since then,
the IF-based causality analysis has been widely applied to
the problems with time series such as global warming [15],
[16], El Niño [14], typhoon genesis prediction [17], space
weather [18], chlorophyll variability [19], relation between
soil moisture and precipitation [20], financial time series
analysis [21], neuroscience problems [22], to name a few.

Considering the success of the IF-based causality anal-
ysis for time series, we henceforth want to generalize it
to panel data. In the following a brief introduction of the
theory is first presented, then in section III, we show that a
generalization can be fulfilled, and an algorithm is then pro-
posed. In section IV, the algorithm is validated with a linear
stochastic system and a highly chaotic deterministic system.
Section V give an application and section VI summarizes the
whole study.

II. INFORMATION-FLOW AND CAUSALITY BETWEEN
TIME SERIES—A BRIEF REVIEW
Different from the various statistical approaches for causal
inference, the information flow-based causality analysis is

derived from first principles in physics. Ever since Liang
and Kleeman [13], much effort has been invested to estab-
lish a rigorous formalism which has just been fulfilled [12].
Accordingly a causal inference technique is developed for
time series [14]. It is concise in form, easy to implement
and, moreover, quantitative in nature (see below (3)). Since its
advent, many applications in different disciplines have been
carried out with remarkable success. The following material
is just a very brief introduction of the theory that is needed
for this study. For a systematic treatment and other materials,
see [12], among other papers.

This line of work begins with the concept of information
flow which is defined as follows:
Definition II.1 In a dynamical system (�,8t) where �

is the phase space and 8t may be a flow or a discrete
mapping, the information flow from a component X2 to
another component X1, written T2→1, is defined as the con-
tribution of entropy from X2 per unit time (continuous time
case) or per step (discrete mapping case) in increasing the
marginal entropy of X1 as the state is steered forth by 8t .
With this, causality can be defined, in a quantitative sense,
Definition II.2 X2 is causal to X1 iff the information flow

T2→1 6= 0. The strength of the causality from X2 to X1 is
measured by |T2→1|. Likewise, the causality from X1 to X2
can be defined.
Remark 1. A nonzero T2→1 may be either positive or

negative. A positive T2→1 means that X2 makes X1 more
uncertain, and vice versa. But for the purpose of causal infer-
ence, the sign is not essential; we just consider its magnitude.
Remark 2. By the definition, we can distinguish three

cases: (1) noncausal (T2→1 = T1→2 = 0), (2) unidirection-
ally causal (T2→1 6= 0,T1→2 = 0 or T2→1 = 0,T1→2 6=

0), (3) bidirectionally causal (T2→1 6= 0,T1→2 6= 0), as
discussed in [23].
Remark 3. In the above definitions entropy is generally

understood as Shannon entropy, but other entropies may also
apply. In this study, we stick to Shannon entropy.

Now consider a two-dimensional (2D) stochastic dynami-
cal system

dX = F (X, t) dt + B (X, t) dW , (1)

where F = (F1,F2) is the vector of drift coefficients, X =
(X1,X2) ∈ R2 are the random variables, W = (W1,W2) is
a standard 2D Wiener process and B =

(
bij
)
is the matrix

of diffusion/volatility coefficients. Liang [24] established that
the time rate of IF from X2 to X1 with respect to Shannon
entropy is:

T2→1 = −E
(

1
ρ1

∂F1ρ1
∂x1

)
+

1
2
E

(
1
ρ1

∂2g11ρ1
∂x21

)
, (2)

where ρ is the joint probability density function of X, ρ1 is
the marginal density of X1, g11 =

∑2
k=1 b

2
1k , and E is the

expectation with respect to ρ. Later on it has been shown
that the formula is the same with respect to Kullback-Leibler
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divergence [25]. Likewise, the IF from X1 to X2 is

T1→2 = −E
(

1
ρ2

∂F2ρ2
∂x2

)
+

1
2
E

(
1
ρ2

∂2g22ρ2
∂x22

)
,

Ideally, if T2→1 = 0, then X2 is not causal to X1; otherwise it
is causal, and the magnitude of |T2→1| means the strength of
the causality. The larger |T2→1|, the stronger causality from
X2 to X1.In practice, significance should be tested prior to
making the inference.

The above derived information flow has many important
properties. The first is the ‘‘Principle of Nil Causality’’ [12]:
a process, say X , has a zero causality to another process, say
Y , if the evolution of Y does not depend on X . This is a basic
principle that all formalisms try to verify in applications,
while in this formalism, it is a proven theorem. Many other
properties can be seen in [12] and [25].

The IF formula has been validated with many highly
chaotic systems, such as baker transformation, Hénon map,
Kaplan-Yorke map, Rössler system, truncated Burgers-Hopft
system, to name a few [12], [26]. Under a linearity assump-
tion, Liang [14] further established that it can be estimated
from two time series, say, X1 and X2. The resulting maximum
likelihood estimator is:

T̂2→1 =
C11C12C2,d1 − C2

12C1,d1

C2
11C22 − C11C2

12

, (3)

where Cij is the covariance between Xi and Xj, Ci,dj is the
covariance between Xi and Ẋj, and Ẋj = (Xj (t + k1t) −
Xj (t))/(k1t) is the difference approximation of dXj

/
dt using

the Euler forward scheme. Here k is usually 1; for cases of
deterministic chaos, it should be set 2. This formula is very
simple in form but evidently very successful in real applica-
tions, some of which have been mentioned in the introduction
above.

Considering that there is a long-standing philosophical
debate over causation versus correlation, rewrite (3) in terms
of correlation coefficients:

T̂2→1 =
r

1− r2

(
r
′

2,d1 − rr
′

1,d1

)
, (4)

here r = C11√
C11C22

is the sample correlation coefficient

between X1 and X2, and r
′

i,dj =
Ci,dj
√
C11C22

the ‘‘correlation

coefficient’’ between Xi and Ẋj. So, if r = 0,T̂2→1 = 0;
the converse, however, is not necessarily true. In other words,
causation implies correlation, but correlation does not
imply causation. Equation (4), therefore, bridges causation
and correlation with a simple mathematical relation.

III. CAUSALITY ANALYSIS FOR HOMOGENEOUS I.I.D.
PANEL DATA–AN ALGORITHM
Panel data not only consist of observations over time, but also
over many individual units. The above dynamical system-
based formula then may not be directly applicable. This is
different from Granger causality, which is fundamentally a
notion of probabilistic conditional independence, and hence

can be applied not only to time series data but also to cross-
section and panel data [27]. We need to re-establish from
scratch a formula of the like of (3). We first give a definition
for panel data causality.
Definition III.1 For a homogeneous panel dataset, the

causality from a variable, say X2, to another variable X1
between two cross-sections is defined as the absolute value of
the information flow from X2 to X1 as the underlying system
evolves between the two steps.
Remark: For panel datasets with more than 2 cross-

sections, a relation of causality vs. time step can be obtained
by computing the information flows between adjacent steps.

As Liang [14], we assume a linear model. Though this sets
a limitation, the formula (3) has proved to be remarkably
successful in many highly nonlinear problems. In fact, this
is not surprising; anyhow, when correlation is referred we
usually mean linear correlation.
Theorem III.1 Suppose a homogeneous i.i.d. panel dataset

is generated through some linear system with Wiener pro-
cesses, and X2 and X1 are the two variables of the dataset.
Then the information flow from X2 to X1 between two adja-
cent steps (t, t +1t) is

T2→1 =
σ12

σ11
·
(−σ12σ1,d1 + σ11σ2,d1)

(σ11σ22 − σ 2
12)

, (5)

where σij are population covariances between Xi(t) and Xj(t),
and σi,dj = E (Xi(t)− EXi(t))

(
1X j − E1Xj

)/
1t , with

1X j = Xj (t +1t)− Xj(t).
Proof

In (1), let

F =
[
F1
F2

]
=

[
a11X1 + a21X2
a12X1 + a22X2

]
. (6)

It has been established in [14] that (2) is reduced to

T2→1 = a11
σ12

σ11
, (7)

which is remarkably simple. Here σij make the entries of the
population covariance matrix. We now estimate this formula,
given an individual independent ensemble of panel data with
two time instances spanned by an interval 1t .
Different from the time series considered in [14], which

requires some extra assumption such as stationary, here the
estimation of (7) turns out to be much easier. The reason is
that (2) appears in a form of ensemble mean, while a set
of panel data provides a natural ensemble. As Liang [14],
discretize (1) with the Euler-Bernstein scheme the dynamical
system to get

X1 (t +1t) = X1 (t)+1t (a11X1 + a21X2)+ b111W ,

where 1w ∼ N (0,1t). For convenience, rewrite it as

a11X1 + a21X2 = 1X1
/
1t − b111W

/
1t. (8)

Considering the availability of the ensemble, take ensemble
mean to get

Ea11X1 + Ea21X2 = E
(
1X1

/
1t
)
. (9)
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Subtracting (9) from (8), then multiplying by (X1 − EX1),
and taking expectation, we get

E (X1 − EX1) (X1 − EX1) a11 + E (X1 − EX1) (X2
− EX1) a12 = E (X1 − EX1) (1X1 − E1X1)

/
1t + 0.

This is

σ11a11 + σ12a12 = σ1,d1, (10)

where σij are covariances between Xi and Xj, and σi,dj =
E (Xi − EXi)

(
1X j − E1Xj

)/
1t . Likewise, the difference

between (8) and (9) multiplied by (X2 − EX2), followed by
a mathematical expectation results in

σ12a11 + σ22a12 = σ2,d1, (11)

(10) and (11) combined to give

a12 =
−σ12σ1,d1 + σ11σ2,d1

σ11σ22 − σ
2
12

. (12)

Substitute back to (7) and we get

T2→1 =
σ12

σ11
·
(−σ12σ1,d1 + σ11σ2,d1)

(σ11σ22 − σ 2
12)

.

Q.E.D.
In real applications, the population covariances need to be

replaced with sample covariances. This results in a formula

T2→1 =
C12(C11C2,d1 − C12C1,d1)
C11(C11C22 − C12C12)

, (13)

which is in a form precisely the same as (3), except that now
the mean is ensemble mean at time t , not time average. Here
T2→1 is understood as an estimator, and should have been
written T̂2→1, but for simplicity, the hat is dropped. Similarly,
the IF from X1 to X2 is

T1→2 =
C12(C22C1,d2 − C12C2,d2)
C22(C11C22 − C12C12)

, (14)

which is absolutely different from (13). This naturally indi-
cates the direction of causality. If the absolute value of T2→1
(|T2→1|) passes the significance test, it is believed that X2 is
the cause of X1. Similarly, if |T1→2| passes the test, X1 is the
cause of X2.
When there are multiple time steps, say K steps, (13)

may be applied to each two adjacent time instances, and
hence obtain (K − 1) information flows, over which an
average information flow result. We hence have the following
algorithm.

IV. VALIDATION
A. A LINEAR PROBLEM
We first use a discretized version of (1) to generate a set of
panel data. Assuming that F and B have the following form

F =
[
a11X1 + a21X2
a12X1 + a22X2

]
=

[
0.3X1 + 0X2
0.5X1 + 0.7X2

]
,

B =
[
0.4 0
0 0.5

]
.

FIGURE 1. a) The initial distribution (blue spots) and the ensemble mean
(red spot) of X1 and X2. b) The distribution of X1 and X2 at t = 150 unit
time.

FIGURE 2. A typical series generated by the 2D autoregressive process
initialized with X1 = 0.3 and X2 = 0.4.

Choose1t = 0.01, and hence1W =
√
1tRN, where RN is

a random number satisfied the standard normally distribution.
This forms a 2D autoregressive process. Clearly, X1 causes
X2, but not vice versa. This kind of problem is usually used
to verify a causality analysis: One component causes another,
but the latter does not cause the former. We initialize the
system by making 10000 draws as follows:

X (t = 0) =

{
X1,t=0 = 0.3+ 0.1RN
X2,t=0 = 0.4+ 0.1RN.

Fig. 1a shows that the initial distribution of X1 and X2 roughly
meet the normal distribution of:

N

((
0.3
0.4

)
,

[
0.12 0
0 0.12

])
.

For each initial condition the system is integrated for
15,000 steps, and the resulting X1 and X2 are recorded, and
eventually form the ensemble. When t = 150 (Fig. 1b),
the distribution has been inclined along the direction of X2 =
X1, which means that X1 and X2 are no longer independent.
Fig. 2 is a typical series with the initial condition of X1,t=0 =
0.3 and X2,t=0 = 0.4. After t = 10, the system reaches a
quasi-stationary state. We hence discard the segment t < 10
in forming the panel data.

According to the size of ensemble or number of individual
units (N ), and temporal series (K ), panel data are
generally divided into three categories: the ‘large K , small

N ’ temporal style long sequences; the ‘small K , large N ’
panel literature, and the ‘large K , large N ’ heterogenous
panel data [4]. By the assumptions in Theorem III.1, here the
heterogeneous case is excluded. Based on this we henceforth
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Algorithm-IF Information Flow for Homogeneous i.i.d.
Panel Data
Input: Panel data Xp1 and Xp2 with dimension N ×K , where
N is the number of individual units andK the time steps, every
two adjacent steps separated by a time interval 1t .
Step 1: Let X1, X2 and Ẋ1 be three empty 1D vectors.
for i = 1 : N

for j = 2 : K
tmp = (Xp1(i, j)− Xp1(i, j− 1))/1t);
Ẋ1 = [Ẋ1; tmp];
X1 = [X1;Xp1(i, j− 1)];
X2 = [X2;Xp2(i, j− 1)];

end
end
note: [A;B]: concatenates B vertically to the end of A.
Step 2: Calculate the covariances: C11, C12, C22, C1,d1 and
C2,d1 with X1, X2, and Ẋ1.
Step 3: Substitute the covariances into (13) and (14) to get
the information flow from X2 to X1 (T2→1) and that from X1
to X2 (T1→2).
Output: T2→1, T1→2.

TABLE 1. Information flows computed with the 7 sets of panel data as
generated.

generate three datasets, and respectively calculate the causal-
ities between X1 and X2.
Case 1. The single pair time series case as studied in

Liang (2014). Considers one realization over the period of
t = 50 − 150 (steps from 5000 to 15000). The information
flow is computed using (3). (Now Algorithm-IF boils down
to this time series analysis case.)

Case 2. Generate a total of 10000 pairs of X at the section
t = (100−1t) and t = 100. Compute the information flow
using Algorithm-IF.

Case 3. Generate 100 pairs of X over the period t =
(100−1011t)100, for 100 steps with equal time stepsize1t .
Compute the information flow using Algorithm-IF.
It is found that in all these cases, |T1→2| is nearly an order

of magnitude larger than |T2→1|. Further, we adopted the
same significance test as [14]. |T1→2| in the 3 cases are all
passes the 99% significance test, while there are no cases that
|T2→1| passes even the 80% significance test. We remark that
in Case 1, using Algorithm-IF or (3) gives exactly the same
result, indicating that time series data is just a particular case
of panel data. By Table 1, Algorithm-IF for these panel data
is robust.

B. A HIGHLY NONLINEAR PROBLEM
In deriving (13), a linear assumption is invoked. That is to say,
strictly speaking, Algorithm-IF computes linear causality.
Since (3) has been evidenced remarkably successful in highly

FIGURE 3. Time series for α = 0.8 with the initial condition X1 = 0.4 and
X2 = 0.1.

nonlinear problems, we here test (13) andAlgorithm-IFwith
such a dataset.

The panel data set is generated with a one-way coupled
anticipatorymap. This is a highly chaotic system designed by
Hahs and Pethel [28] which fails the existing causal inference
techniques then:

X1 (t + 1) = f (X1 (t)) ,

X2 (t + 1) = (1− ε) f (X2 (t))+ εgα (X1 (t)) , (15)

where,

f (x) = 4x (1− x) ,

gα (x) = (1− α) f (x)+ αf 2 (x) ,

and f 2 means that the logistic map f applies twice, α is a
parameter called the ‘‘anticipation parameter’’. Picking ε =
0.3, α = 0.8, an example series pair is shown in Fig. 3. From
(15) obviously X1 causes X2, but not vice versa. However,
Hahs and Pethel [28] showed that, with the existing tech-
nique, the causality thus inferred becomeswidely off the track
as α increases on α ∈ [0, 1]. When α > 0.5, not only the
computed causality from X2 to X1 becomes dominating that
from the other way around. We hence generate some panel
data sets with this touch-stone system to test our algorithm.
The anticipation parameter α takes value from 0 to 1 every
0.1. Like the linear runs for each α, with the initial conditions
as:

X (t = 0) =

{
X1 = 0.4(1+ 0.1RN)
X2 = 0.1(1+ 0.1RN).

For each group of runs, the system is iterated by 10,000 times,
when the resulting X1 and X2 are recorded.We check three
cases with this map: cases 4, 5, 6, which are the same as
cases 1, 2, 3, respectively, but with the nonlinear anticipatory
system. The two time steps for case 5 are 9998 and 10000,
respectively. Fig. 4 is the absolute value of the information
flow (|T2→1| and |T1→2|) under the different cases and differ-
ent anticipation parameters. The information flows with the
panel data (no matter with large N, small K or the large N,
largeK ) are similar as the result of the time series information
flow as obtained by Liang (2014). Most importantly, |T2→1|

is very small throughout, though not exactly zero (perhaps
due to the linear model used). Secondly, for 0 ≤ α ≤ 0.3
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FIGURE 4. The absolute value of IF (units: nats/unit time) from X1 to
X2,

∣∣T1→2
∣∣ (blue line) and that from X2 to X1,

∣∣T2→1
∣∣ (red line) under

different anticipation parameter α. a) Case 4; b) Case 5; c) Case 6. The
result here is in sharp contrast to the classical ones, in which the red line
dominates, as shown in Hahs and Pethel [28].

or 0.8 ≤ α ≤ 1.0, |T1→2| is much larger than |T2→1|,
indicating a one-way causality in a consistent way. This is
in sharp contrast to the counterintuitive result of spurious
causality as discovered by Hahs and Pethel [28].

When 0.4 ≤ α ≤ 0.7, the information flow fromX1 toX2 is
quite small. But even in such situations, the |T1→2| / |T2→1|

in all the cases are all no less than 1.5, and, besides, T1→2
passes the 99% significance test, while T2→1 does not pass
the 95% significance test. In a word, though with a linear
assumption, Algorithm-IF can capture the causality among
an otherwise highly nonlinear panel dataset in a consistent
way.

V. REAL PROBLEM APPLICATION
So far panel data are mostly investigated in economics.
For this reason, we apply Algorithm-IF to a problem on
economy versus energy. Specifically, it is about the causal
relationship between economic growth, trade openness and
energy consumption, based on the data of 15 Asian coun-
tries (Pakistan, India, Bangladesh, Sri Lanka, Philippines,
Thailand, Indonesia, China, Malaysia, Japan, Jordan, Iran,
South Korea, Nepal and Vietnam) over the period of
1980–2011. The problem has been studied by [29], hereafter
NA14. They found a bi-directional causality among the above
four factors (Table 7 in NA14). Here, we re-examine the
problem with the above proposed new algorithm based on a
rigorously developed theory.

A detailed description of the data is referred to NA14.
Briefly, energy consumption is measured by the Kg of oil
equivalent per capita; economic growth is by real GDP per
capita in constant international dollar; exports (US$) plus
imports (US$) divided by population is used to measure trade

TABLE 2. The absolute values of information flow (units: nats/year) and
the p-values (in parentheses) among the energy consumption, economic
growth, trade openness and oil price.

FIGURE 5. Significant information flows among energy consumption,
economic growth, trade openness and energy price. See the text for
details.

openness; the price of Dubai crude oil (US$) deflated by the
country’s consumer price index (100 in the year of 2005) is
used as a proxy for energy price due to the unavailability of
energy price data. Data on energy consumption per capita,
merchandise exports, merchandise imports, consumer price
index and population are obtained from World Development
Indicators (2013) of the World Bank. Data on real GDP
per capita are collected from Penn World Tables Version
8.0 [30] and Dubai crude oil price data are taken from British
Petroleum’s 2013 statistical review of world energy [31].

We calculate the information flows/causalities among the
four factors with our Algorithm-IF. Similar to the Granger
causalities as computed in NA14, we regard the causality with
a p-value of information flow less than 0.05, 0.10, 0.15 as,
respectively, strong, normal, and weak causality. The results
are tabulated in Table 2, with information flows significant
at an 85% confidence level blackened. For easy illustration,
the causal relation is summarized in Fig. 5. From its economic
growth and energy consumption are mutually causal, but the
causality between economic growth and trade openness, and
that between economic growth and energy price are one-
way. Specifically, there is a strong bidirectional causality
between economic growth and energy consumption, a strong
unidirectional causality from trade openness to economic
growth, and a weak unidirectional causality from energy
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price to economic growth. The first two are significant at
a 99% confidence level; the third is significant at an 85%
level. All other causalities (in total there could be 4× 3 = 12
causalities) have not passed the significance test at the 85%
confidence level, particularly, energy price (oil price) has
no direct causal relationship with either energy consump-
tion or trade openness, though it does exert a limited impact
on the economic growth (significant at 85% confidence level;
indicated by dashed line).

The above inferred causal relations are evidenced by
reports in the literature. First, the bidirectional causal rela-
tionship between energy consumption and economic growth
has been discussed in many papers. Since the energy cri-
sis in 1970s, many studies have confirmed the existence of
such a causal relationship, e.g., [32]–[36], among others.
Recently in some studies it is argued that no direct causal rela-
tionship between energy consumption and economic growth
may exist [37]–[39]. Even this is true, most of such studies
are based on the data from developed countries. For the
15 countries selected here, most are developing countries.
The improvement of people’s living standard is bound to the
increase in energy consumption. Indeed, other studies based
on the data from South Asia [40], [41], Southeast and East
Asia [42], [43] all attest to this mutual causal relation.

For these 15 Asian countries, trade openness will not
directly affect energy consumption; the converse does not
hold, either. However, trade openness can affect the energy
consumption by influence the economic growth. This is
similar to the conclusion of Cole’s [44], who found that
trade liberalization promotes economic growth, which then
boosts energy demand. It is noted that these 15 countries,
especially those from East Asia and Southeast Asia, and
India, have taken over a large portion of the manufacture
from Europe and the United States since the 1980s, promot-
ing economic growth and henceforth energy consumption
through the globalized industrial chain. A slightly counter
intuitive finding is that no direct causality between oil price
and energy consumption is identified. But with the unidi-
rectional causal link from oil price to energy consumption,
oil price can exert impact on energy consumption. This does
make more sense than a direct causality from oil price to
energy consumption—Based on our observation, we would
not drive more just because gasoline becomes cheaper. For
oil importing/exporting countries, the rise in oil price is
negatively/positively correlated with economic growth [45].
By influencing the economic growth, oil price may affect
energy consumption to a certain extent. Sarwar et al. [46]
point out that fluctuations in oil price will affect economic
growth, but electricity consumption can compensate for this
effect to a certain extent. This is also the possible reason why
oil price has only a weak impact on economic growth.

VI. CONCLUSION
Since it was found that information flow (IF) and causality
are real physical notions and can be formulated on a rigorous
footing (see [12]), many efforts have been made to put it

to application to the important field of causal inference in
data science. In this study, we generalized the method for
time series, as established by Liang [14], to causal inference
for homogeneous and i.i.d. panel data. The generalization is
mathematically rigorous but straightforward, and the result-
ing formula bear the same form as that for time series, though
the meanings of the symbols differ. We then proposed an
algorithm, Algorithm-IF, for homogeneous and i.i.d. panel
data causality analysis.

The algorithm has been validated with panel data sets from
a linear stochastic model and a highly chaotic deterministic
system. Three kinds of datasets, namely, time series, tem-
poral style long sequences, and panel literature, have been
generated and used for the validation. We found that in all
these cases, the algorithm proves to be successful. Particu-
larly, the performance with a touch-stone highly nonlinear
problem proposed by Hahs and Pethel [28] turns out to be
remarkably successful, though currently a linear assumption
is made, in sharp contrast to the classical inference problem
as discovered by Hahs and Pethel [28].

As a real-world application, we applied the algorithm to
examine the causal relation among economic growth, energy
consumption, trade openness, and energy price based on
15 Asian countries over the period 1980-2011. It is found that
there are a strong bidirectional causality between economic
growth and energy consumption, and a strong causality from
import and export trade to economic growth.

Energy price does not have a direct impact on energy
consumption, but it does exert a limited effect on the latter
through influencing economic growth. These inferred causal
relations are rather robust, and have been well justified by
previous studies and observations.

Some issues remain. Recall the assumptions we have
made in Theorem III.1, homogeneity and independence
(and identical distribution). But a general panel dataset may
be heterogeneous and may be subject to pervasive cross-
sectional dependence. For heterogeneous panel data, where
some individuals may be causal while others may not be
(e.g., [47]), more than one dynamical system should be taken
into account in arriving at the information flow. For panel
data with cross-sectional dependence, whereby all units in
the same cross-section are correlated due to, for instance,
the presence of common shocks and unobserved components
that have been taken as part of the error ([48], [49]), the
problem becomes more severe. These issues, among others,
are to be investigated in future studies.
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