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El Niño Modoki can be mostly 
predicted more than 10 years 
ahead of time
X. San Liang1,2,3*, Fen Xu2, Yineng Rong2, Renhe Zhang1,3,4, Xu Tang1,4 & Feng Zhang1,3

The 2014–2015 “Monster”/“Super” El Niño failed to be predicted one year earlier due to the growing 
importance of a new type of El Niño, El Niño Modoki, which reportedly has much lower forecast skill 
with the classical models. In this study, we show that, so far as of today, this new El Niño actually 
can be mostly predicted at a lead time of more than 10 years. This is achieved through tracing the 
predictability source with an information flow-based causality analysis, which has been rigorously 
established from first principles during the past 16 years (e.g., Liang in Phys Rev E 94:052201, 
2016). We show that the information flowing from the solar activity 45 years ago to the sea surface 
temperature results in a causal structure resembling the El Niño Modoki mode. Based on this, 
a multidimensional system is constructed out of the sunspot number series with time delays of 
22–50 years. The first 25 principal components are then taken as the predictors to fulfill the prediction, 
which through causal AI based on the Liang–Kleeman information flow reproduces rather accurately 
the events thus far 12 years in advance.

El Niño prediction has become a routine practice in operational centers all over the world because it helps make 
decisions in many sectors of our society such as agriculture, hydrology, health, energy, to name a few. Recently, 
however, a number of projections fell off the mark. For example, in 2014, the initially projected “Monster El Niño” 
did not show up as expected; in the meantime, almost no model successfully predicted the 2015 super El Niño 
at a 1-year lead  time1. Now it has been gradually clear that there are different types of El Niño; particularly, 
there exists a new type that warms the Pacific mainly in the center, and tends to be more unpredictable than 
the traditional El Niño with the present coupled  models2. This phenomenon, which has caught much attention 
 recently3–7 (c.f.8 for an earlier account), has been termed El Niño  Modoki6, Central-Pacific (CP) type El Niño5, 
Date Line El Niño4, Warm Pool El Niño7, etc.;  see9 for a review. El Niño Modoki has left climate imprints which 
are distinctly different from that caused by the canonical El Niño. For example, during El Niño Modoki episodes, 
the western coast region of the United States suffers from severe drought, whereas during canonical El Niño 
periods it is usually  wet10; in the western Pacific, opposite impacts have also been realized for the tropical cyclone 
activities during the two types of El Niño periods. El Niño Modoki can reduce more effectively the Indian 
monsoon rainfall, exerting influences on the rainfall in Australia and southern China in a way different from 
that canonical El Niño does; also notably, during the 2009 El Niño Modoki, a stationary anticyclone is induced 
outside Antarctica, causing the melting the  ice1,11.

El Niño Modoki prediction is difficult because its generating mechanisms are still largely unknown. Without 
a correct and complete attribution, the dynamical models may not have all the adequate dynamics embed-
ded (e.g.,12). Though recently it is reported to correspond to one of the two most unstable  modes13 for the 
Zebiak–Cane  model14, the excitation of the mode, if true, remains elusive. It has been argued that the central 
Pacific warming is due to ocean  advection7, wintertime midlatitude atmospheric  variations15, wind-induced 
thermocline  variations6, westerly wind  bursts16, to name a few. But these proposed mechanisms are yet to be 
verified. One approach to verification is to assess the importance of each factor through sensitivity experiments 
with numerical models. The difficulty here is, a numerical climate system may involve many components with 
parameters yet to be determined empirically, let alone the highly nonlinear components, say, the fluid earth 
subsystem, may be intrinsically uncertain. Besides, for a phenomenon with physics largely unknown, whether 
the model setup is dynamically consistent is always a concern. For El Niño Modoki, it has been reported that the 
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present coupled models tend to have lower forecast skill for El Niño Modoki than that for canonical El Niño2, 
probably due to the fact that, during El Niño Modoki, the atmosphere and ocean fail to connect. For all the above, 
without a correct attribution, it is not surprising to see that the 2014–2015 forecasts fell off the mark—essentially 
no model predicted the 2015 El Niño at a 1-year lead time (cf.17).

Rather than based on dynamical models, an alternative approach relies heavily on observations and gradually 
becomes popular as data accumulate. This practice, commonly known as statistical forecast in climate science 
(e.g.,18) actually appears in a similar fashion in many other disciplines, and now has evolved into a new science, 
namely, data science. Data science is growing rapidly during the past few years, one important topic being pre-
dictability. Recently it has been found that predictability can be transferred between dynamical events, and the 
transfer of predictability can be rigorously derived from first principles in  physics19–21. The finding is expected 
to help unravel the origin(s) of predictability for El Niño Modoki, and hence guide its prediction. In this study, 
we introduce this systematically developed theory, which was in fact born from atmosphere-ocean science, 
and, after numerous experiments, show that El Niño Modoki actually can be mostly predicted at a lead time of 
13 years or over, in contrast to the canonical El Niño forecasts. We emphasize that it is NOT our intention to do 
dynamical attributions here. We just present a fact on accomplished predictions. There is still a long way to go 
in pursuit of the dynamical processes underlying the new type of El Niño.

Seeking predictor(s) for El Niño Modoki with information flow analysis. The major research 
methodology is based on a recently rigorously developed theory of information  flow20, a fundamental notion 
in physics which has applications in a wide variety of scientific disciplines. Its importance lies beyond the literal 
meaning in that it implies causation, transfer of predictability, among others. Recently, it has just been found to 
be derivable from first principles (rather than axiomatically proposed)20, initially motivated by the predictability 
study in atmosphere-ocean  science19. Since its birth it has been validated with many benchmark dynamical sys-
tems (cf.20), and has been successfully applied to different disciplines such as earth system science, neuroscience, 
quantitative finance, etc. (cf.22–24). Refer to the “Method” section for a brief introduction.

We now apply the information flow analysis to find where the predictability of El Niño Modoki is from. Based 
on this it is henceforth possible to select covariate(s) for the prediction. Covariate selection, also known as spar-
sity identification, is performed before parameter estimation. It arises in all kinds of engineering applications 
such as helicopter  control25 and other mechanical system  modeling26, as well as in climate science. We particularly 
need to use the formula (6) or its two-dimensional (2D) version (7) as shown in the “Method” section. The data 
used are referred to the Data Availability Section.

At the first step we sort of use brute force: compute the information flows from the index series of some 
prospect driver to the sea surface temperature (SST) at each grid point of the tropical Pacific. Because of its quan-
titative nature, the resulting distribution of information flow will form a structure which we will refer to “causal 
structure” henceforth. While it may be within expectation that information flow may exist (different from zero) 
for the SST at some grid points, it is not coincidental if the flows at all grid points organize into a certain pattern/
structure. (This is similar to how teleconnection patterns are  identified27.) We then check whether the resulting 
causal structure resembles the El Niño Modoki pattern, say, the pattern in the Fig. 2b  of6. We have tried many 
indices (e.g. those of Indian Ocean Dipole, Pacific Decadal Oscillation, North Atlantic, Atlantic Multi-decadal 
Oscillation, to name but a few), and have found that the series of sunspot numbers (SSN) is the very one. In the 
following we present the algorithm and results.

We first use the 2D version of Eq. (6) (cf. (7)) to do a rough estimate for the information flow from SSN to 
the SST at each grid point, given the time series as described in the preceding section. This is the practice how 
teleconnection patterns are identified using correlation analysis, but here the computed is information flow. 
(Different from the symmetric correlation, here the information flow in the opposite direction is by computa-
tion insignificant, just as expected.) We then form delayed time series for SSN, given time delays n = 1, 2, . . . , 
and repeat the above step. For convenience, denote an SSN series with delay n by SSN(−n ). We find that the 
resulting information flow is not significant at a 90% confidence level, or has a structure bearing no resemblance 
to the desired pattern, until n approaches 45 years; see Supplementary Fig. S1, for a number of examples. Here 
the data we are using are the SST from 01/1980 through 12/2017 (SST are most reliable after 1979), and the 
SSN data are correspondingly from 01/1935 through 12/1972. Note that using the time delayed coordinates we 
may reconstruct a dynamical system which is topologically equivalent to the one that originally generates the 
time series, thanks to Takens’ embedding  theorem28. (A topologically equivalent reconstruction is in general 
difficult, as here we do not know the dimension of the manifold underlying the solar activity.) Here, based on 
the above rough estimates, we choose to form a dynamical system with components corresponding to the SST 
series and the time-delayed series SSN(−n ) with n ranging from 22 to 50 years. Note one is advised not to choose 
two delays too close. SSN is dominated by low-frequency processes; two close series thus-formed may not be 
independent enough to span a subspace, and hence may lead to singularity. Here we choose SSN series at delays 
of 22–50 years every 5 years or 60 steps. We have tried many other sampling intervals and found this is the best. 
From the thus-generated multivariate series, we then compute the information flow from SSN(−45 years) to the 
Pacific SST, using formula (6).

A note on the embedding coordinates. In general, it is impossible to reconstruct exactly the original dynami-
cal system from the embedding coordinates; it is just a topologically equivalent one at most. That also implies 
that the reconstruction is not unique. Other choices with delayed time series may serve the purpose as well, 
provided that they are independent of other coordinates;  see29 for empirical methods for time delay choosing. 
Fortunately, this does not make a problem for our causal inference, thanks to a property of the information flow 
ab initio, which asserts that
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The information flow between two coordinates of a system stays invariant upon arbitrary nonlinear trans-
formation of the remaining coordinates.

More details are referred to the “Method” section. This remarkable property implies that the embedding coor-
dinates do not matter in evaluating the information flow from SSN to SST; what matters is the number of the 
coordinates, i.e., the dimension, of the system, which makes a topological invariant. There exist empirical ways 
to determine the dimension of a system, e.g., those as shown  in29. Here we choose by adding new coordinates 
and examining the information flow; if it does not change much, the process stops and the dimension is hence 
determined. For this problem, as shown above, the SSN series at delays of 22–50 years every 5 years are chosen. 
This results in six auxiliary coordinates, which together with the SST and SSN(−45 years) series make a system 
of dimension 8.

The spatial distribution of the absolute information flow, or “causal structure” as will be referred to henceforth, 
from SSN(−45 years) to the Pacific SST is shown in Fig. 1.

Remarkably, the causal structure in Fig. 1a is very similar to the El Niño Modoki pattern, as given by, say, 
Ashok et al.6. (Please see their Fig. 2b.) That is to say, the information flow from SSN to the Pacific SST does form 
a spatially coherent structure resembling to El Niño Modoki.

To see whether the computed causal structure or causal pattern is statistically significant, significance test 
is performed using the techniques as described in the “Method” section. The computationally simple one is 
with the Fisher information matrix; by it the causal structure is significant at a 90% confidence level, as shown 
in Fig. 1b. More robust testing requires that surrogate data be generated with an autoregressive model. Details 
are referred to the “Method” section, and the results are presented in Supplementary Figs. S2 and S3. As can be 
seen, the causal structure is significant at a level of 99%. We have tried 100 and 200 surrogates for each series 
and the results are similar.

Comparing to the rough estimate in the bivariate case (see Supplementary Fig. S1d), Fig. 1a has a horse-
shoe structure pronounced in the upper part, plus a weak branch in the Southern Hemisphere. This is just as 
the El Niño Modoki structure as obtained by Ashok et al.6 (see their Fig. 2b). This indicates that the bivariate 
information flow analysis provides a good initial guess, but the result is yet to be rectified due to the potentially 
incorrect dimensionality.
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Figure 1.  (a) The absolute information flow from the delayed (by 45 years) series of sunspot numbers to those 
of the sea surface temperature in the Pacific Ocean (in nats/month). The pattern resembles very much the 
El Niño Modoki mode as shown in the Fig. 2b  of6. Here information flow means the transfer of predictability 
from one series to another. It is computed with Eq. (6) in “Method”. (b) As (a), but only the information flow 
significant at a 90% confidence level is shown. (Figure generated with MATLAB, Version 6.5. http:// www. mathw 
orks. com/).
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The information flows with other time delays have also been computed. Shown in Supplementary Fig. S4, 
are a number of examples. As can be seen, except those around 45 years (about 44–46 years, to be precise), other 
delays either yield insignificant information flows or do not result in the desired causal pattern.

Since we are about to predict, it is desirable to perform the causality analysis in a forecast fashion, i.e., to 
pretend that the SST, hence the El Niño Modoki Index (EMI) that measures the strength of the event, over the 
forecast period be unavailable. We have computed the information flow with different years of availability. Shown 
in Supplementary Fig. S5 is the information flow as that in Fig. 1, but with SST data available until the year of 
2005. Obviously, the causal pattern is still there and significant, and, remarkably, it appears even more enhanced, 
probably due to the frequent occurrences of the event during that period.

As information flow tells the transfer of predictability, SSN forms a natural predictor for El Niño Modoki. 
This will be further confirmed in the next section.

Prediction of El Niño Modoki. The remarkable causal pattern in Fig. 1 implies that it may be possible to 
make forecasts of El Niño Modoki many years ahead of time. Based on it we hence conjecture that the lagged 
SSN series be the desired covariate. Of course, due to the short observation period, the data needed for paramet-
ric estimation are rather limited—this is always a problem for climate projection.

Let us start with a simple linear regression model for the prediction of El Niño Modoki Index (EMI) from 
SSN. Build the model using the EMI data from 1975–2005 ( 30× 12 = 600 equations), leaving the remaining 
years after 2005 for prediction. For each EMI, the model inputs are the SSNs at lead times of 50 years through 
22 years (336 in total), guided by the causality analysis in the preceding section. For best result, the annual 
signals and the signals longer than 11 years are filtered from the SSN series. The filtering is fulfilled through 
wavelet analysis with the orthonormal spline wavelets built  in30. Since it is required that the series length be a 
power of 2, we choose a time range for the monthly SSN series from May 1847 to December 2017, depending on 
the availability of the data when this research was initialized. This totals 170 years and 8 months (170.67 years), 
or 211 = 2048 time steps. The upper bound scale level for the wavelet analysis is set 8, which gives a lower 
period of 2−8 × 170.67 = 0.67 years; the lower bound scale level is chosen to be 4, resulting an upper period 
of 2−4 × 170.67 = 10.67 years. In doing this the seasonal cycle and the interdecadal variabilities are effectively 
removed (Supplementary Fig. S6). With the pretreated SSN series the prediction is launched, and the result is 
shown in Fig. 2a.

We would not say that the prediction in Fig. 2a with such a simple linear model is successful, but the 2015/2016 
event is clearly seen. The strong 2009 event is not correct; it has a phase error. The general trend between 2005 
and 2018 seems to be fine. Beyond 2018 it becomes off the mark.

1960 1970 1980 1990 2000 2010
−1.5

−1

−0.5

0

0.5

1

1.5

Year

EM
I

(b)

1960 1970 1980 1990 2000 2010
−1.5

−1

−0.5

0

0.5

1

1.5

EM
I

(a)

Figure 2.  Prediction of the El Niño Modoki index based solely on the sunspot numbers 22–50 years ago with a 
simple linear regression model. (a) The SSN series are bandpass filtered with the annual signals and the signals 
longer than 11 years removed. (b) Only 25 first principal components are used as inputs. The shaded period 
is for prediction, and the predicted index is in red. (Figure generated with MATLAB, Version 6.5. http:// www. 
mathw orks. com/).
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It would be of some use to see how the simple linear prediction may depend on some factors, though it 
cannot be said successful and hence a quantitative investigation does not make sense. We hope to learn some 
experience for the machine learning to be performed soon. First, we check the effect of filtering. As shown in 
Supplementary Fig. S7, without filtering, the result is much noisier, the 2015/2016 event is too strong, and the 
strong 2009/2010 event completely disappears; with low-pass filtering (only the signals below a year are filtered), 
the result is similar, only with the noise reduced and the 2015/2016 event better.

Second, we perform an empirical orthogonal function (EOF) analysis for the 336 time-delayed SSN series, 
which forms a column vector with 336 entries at each time step: [ SSN(n− 600), SSN(n− 599), . . . , SSN(n− 265)
]T . The variance for each EOF mode is plotted in Supplementary Fig. S8. From it the first 8, 25, and 50 principal 
components (PCs) approximately account for 84%, 89%, and 92% of the total variances, respectively. Some exam-
ples of the EOF modes are plotted in Supplementary Fig. S9. Now use the first 25 PCs as inputs and repeat the 
above process to make the prediction. The result is shown in Fig. 2b. Obviously, during the 12 years of prediction 
from 2005 to 2017, except for the strong 2009/2010 event, the others are generally fine. Projections with other 
numbers of PCs have also been conducted. Shown in Supplementary Fig. S10 are examples with 8 and 50 PCs, 
respectively. It is particularly interesting to see that, except for the 2009/2010 event, the case with 8 PCs already 
captures the major trend of the EMI evolution. Recall that, in performing the information flow analysis, we have 
found that the reconstructed dynamical system approximately has a dimension of 8. Here the prediction agrees 
with the dimension inference.

Because of the encouraging linear model result, it is desirable to achieve a better prediction using more 
sophisticated tools from artificial intelligence (AI)/deep learning, e.g., the back propagation (BP) neural net-
work  algorithm31. (At the preparation of the original version of this manuscript, we noticed that recently there 
have been applications of other machine learning methods to El Niño forecasts, e.g.,32.) Three hidden layers are 
used for the BP neural network forecast. Again, a major issue here is the short observational period which may 
prevent from an appropriate training with many weights. We hence use only 8, 6, and 1 neurons for the first, 
second, and third hidden layers, respectively, as schematized in Fig. 3. This architecture will be justified soon. 
To predict an EMI at step (month) n, written y, a 336× 1 vector x is formed with SSN data at steps (months) 
n− 600, n− 599, . . . , n− 265 , the same as the case with lead times of 50–22 years for the above simple linear 
regression model. (Note here the “predictions” include those on the validation set.) But even with the modest 
number of parameters, the data are still not enough. To maximize the use of the very limited data, we choose the 
first 25 principal components (PCs) that account for 90% of the total variance. We hence train the model with 
these 25 inputs (rather than 336 inputs); that is to say, x now is a 25× 1 vector, which greatly reduces the number 
of parameters to train. (See below in Eq. (1): The w1 is reduced from a 8× 336 matrix to a 8× 25 matrix.) Once 
this is done, x is input into the following equation to arrive at the prediction of y:

where the matrices/vectors of parameters w1 ( 8× 25 matrix), w2 ( 6× 8 matrix), w3 ( 1× 6 row vector), w4 ( 1× 1 
matrix—a scalar), b1 ( 8× 1 vector), b2 ( 6× 1 vector), b3 (scalar) and b4 (scalar) are obtained through training 
with trainbr, a network training function that updates these weights through the Levenberg-Marquardt optimiza-
tion. The training stops when any of the following conditions occurs: (1) maximum number of epochs reached 
(set to be 1000); (2) performance minimized to the goal (set to be 1× 10−5 ); (3) performance gradient falling 
below min_grad (set to be 20); (4) the adaptive value in the Bayesian regularization, µ , exceeding µmax (set to be 
1× 105 ).  See33 for details. An illustrative explanation is seen in Fig. 3. As has been argued (e.g.34) that the number 
of hidden neurons should be kept fewer than 2/3 the size of the input and output layers, i.e., 23 × (25+ 1) = 17 
here. With this architecture we have 15 neurons in total, meeting the requirement.

To predict the EMI at month/step n, EMI(n) , organize SSN(n− 600), SSN(n− 599), . . . , SSN(n− 265) , that 
is, the SSNs lagged by 50 through 22 years, into a 336× 1 vector. Project it onto the first 25 EOFs as obtained 

(1)y = w4 tansig(w3 tansig(w2 tansig(w1 x + b1)+ b2)+ b3)+ b4,

Figure 3.  The neural network architecture used in this study, which is made of an input layer, an output layer, 
and three hidden layers. The symbols are the same as those in (1). The matrices/vectors wi and bi ( i = 1, 2, 3, 4 ) 
are obtained through training. To predict the El Niño Modoki Index (EMI) at month/step n, EMI(n) , find the 
first 25 principal components of [ SSN(n− 600), SSN(n− 599), . . . , SSN(n− 265)]T , a column vector with 
336 entries, and form the input vector x . The final output y is the predicted EMI(n) . Iterating on n, we can get a 
prediction of EMI for any target time interval. (Figure generated with MATLAB, Version 6.5. http:// www. mathw 
orks. com/).
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above, and obtain x , a vector with 25 entries. Input x into Eq. (1). The final output y is the predicted EMI(n) . 
Iterating on n, we can get a prediction of EMI for any target time interval.

The 5-year data prior to the starting step of prediction are used for validation. In this study, we start off 
predicting EMI at January 2008. We hence take the data over the period from January 2003 through December 
2007 to form the validation set, and the data until December 2002 to train the model. The validation set is kind 
of short but we have to live with it, otherwise there would be insufficient data for the training. We have also tried 
different intervals of the same length for validation. The results are poor, acceptable, and successful respectively 
for those before 1980, those between 1985 through 1995, and those after 1995. This makes sense, for atmosphere/
ocean/climate problems are notoriously predictability limited as time moves on (the arrow of time; more below 
on cross-validation), and hence the most recent time interval(s) should be chosen to form the validation set 
(e.g.,35,36). To test whether the model performance is sensitive to the validation sample size, we have utilized the 
“new” data from 2008 through 2020 and make predictions into the future from now. Validation sets of differ-
ent length have been chosen on the interval 2003–2020: 2003–2009, 2010–2020, 2014–2020, and the results are 
essentially the same.

10,000 runs have been performed, and we pick the one that minimizes the mean square error (MSE) over 
the validation set. This is plotted in Fig. 4. Remarkably, the 12-year long index has been forecast with high skill 
(corr. coeff. = 0.91). Particularly, the strong 2009/2010 event is well predicted, so is the 2019/2020 event. The 
2014/2016 event, which has made the El Niño forecasts off the mark in 2014–2015, appears a little weaker but 
also looks fine by trend.

Out of the 10,000 runs we select the top 10% with lowest MSE over the validation set (January 2003–December 
2007) to form an ensemble of predictions for the 12 years of EMI (January 2008 till now). The spread, the mean, 
and the standard deviation of the ensemble are shown in Fig. 5. Also overlaid is the observed EMI (blue). As can 
be seen, the uncertainty is rather limited for a climate projection.

We have examined how the prediction performance may vary with the choices of PCs, the number of neurons, 
and the lags. The PCs of a vector are obtained by projecting it onto the EOF modes (described above), which 
possess variances and structures as plotted in Supplementary Figs. S8 and S9, respectively. Shown in Fig. 6 is the 
MSE as a function of the number of PCs. Obviously with 25 PCs the MSE is optimized, and that is what we have 
chosen for the network architecture. But if one takes a closer look, the MSE does not decrease much beyond 8. 
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Figure 4.  Prediction of the El Niño Modoki index based solely on the sunspot numbers 22–50 years ago with 
the back propagation neural network algorithm. The EMI is in blue, while the predicted index is in red. Lightly 
shaded is the period over which the validation set is formed, and the period with dark shading is for prediction. 
(Figure generated with MATLAB, Version 6.5. http:// www. mathw orks. com/).
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Figure 5.  The 1000 predictions showing the spread of the ensemble. Overlaid are the observed EMI (blue), the 
mean of the realizations (cyan), and the mean plus and minus the standard deviation (black). The light shading 
marks the period for validation, while the darker shading marks the prediction period. (Figure generated with 
MATLAB, Version 6.5. http:// www. mathw orks. com/).
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Recall that, in performing the causality analysis, we have seen that the reconstructed dynamical system approxi-
mately has a dimension 8. Fig. 6 hence provides a verification of the dimension inference.

The EOF modes associated with these 8 PCs are plotted in Supplementary Fig. S9. As can be seen, except for 
the 11-year process, among others, the 5-year variability is essential. This is, again, consistent with what we have 
done in forming the embedding coordinates: select the delayed series every 5 years.

The dependence of the model performance on the number of neurons has also been investigated. We choose 
1 neuron for layer 3, leaving the numbers of layers 1 and 2 for tuning. The result is contoured in Fig. 7. As can 
be clearly seen, a minimum of MSE appears at (8,6), i.e., when the numbers of hidden layer 1 and layer 2 are, 
respectively, 8 and 6. This is what we have chosen to launch the standard prediction.

Also studied is the influence of the lags for the delayed series. In Fig. 8 the MSE is shown as function of the 
lower and upper bounds of the delays (in years). From the figure there are a variety of local minima, but the one 
at (22, 50) is the smallest one. That is to say, the series with delays from 22 to 50 years make the optimal embed-
ding coordinates, and this is just what we are choosing.

We have tried to make hindcasts from the limited data to cross-validate the forecasts. (Many thanks to an 
anonymous reviewer for the input.) From the whole history 1920–2020 we pick a 5-year interval, say [1920, 1924], 
as the validation period, and use the rest data to train the model. Then, swap the interval until all the 5-year 
intervals throughout have been utilized. The “forecasts” for all the validation periods are then pieced together 
to form a plot (Supplementary Fig. S11, upper panel), which allows one to see the possible time dependence of 
the forecast skill. From it we see that the “forecasts” after 1980 are good, but those before are not, though the 
trend looks fine. This could be either due to the poor quality of observation before 1980 or due to the arrow of 
time as mentioned above. To illustrate, consider a simple partial differential equation that mimics a linearized 
“one-dimensional atmospheric flow”
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Figure 6.  Mean square error for the neural network prediction as a function of number of principal 
components. (Figure generated with MATLAB, Version 6.5. http:// www. mathw orks. com/).
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for −∞ < x < ∞ , t ≥ 0 . Let, for example, a = 1 , ν = 0.1 , and initially ( t = 0 ) an impulse is placed at x = 0 . The 
solution can be found analytically. If we take measurements at x1 = 0 and x2 = 2 , two time series u1(t) = u(0, t) 
and u2(t) = u(2, t) are obtained. Note obviously u1 is causal to u2 , but not the other way around. We hence can 
use the past history of u1 to predict the future of u2 , with the above deep learning technique. Since the diffusion 
process is irreversible, it is generally impossible to use the future data of u1 to “predict” the past of u2 . u2(1) , This 
is a simple example showing the “arrow of time” in the atmosphere–ocean processes.

We have tried different validation periods, e.g., a 10-year period and a 20-year period, for the cross-validation. 
The result with the 20-year period is shown in Supplementary Fig. S11 (lower panel), which is generally similar 
to the one with the 5-year period.

It is known that machine learning suffers from the problem of  reproducibility37. But in this study, as we have 
shown above, the prediction guided by the information flow analysis is fairly robust, with uncertainty acceptably 
small for climate projection. For all that account, the El Niño Modoki events so far are mostly predictable at a 
lead time of more than 10 years.

Causality evolution and prediction into the future. We want to emphasize again that it is NOT our 
intention to make dynamical attribution, and hence the above trained model, which is based on the data of the 
past century, may not be universally applicable. Nonetheless, with the model it is tempting to make forecasts 
into the future. This is however risky, due to some unforeseen reasons (e.g., the causality problem as illustrated 
below), although the prediction made early in 2018 (when the original manuscript was prepared) agrees with 
the observation so far as of today. Here the best 1000 out of the 10,000 forecasts are plotted in Supplementary 
Fig. S12a (“best” in the sense of minimal bias over the validation period 01/2003–12/2007.) Correspondingly 
the RMS is as shown in Supplementary Fig. S12b. As can be seen from the spread and the RMS, the uncertainty 
becomes large after 2020, and predictability is soon lost after that. Another observation is that the RMS varies 
decade by decade. The decadal variation of predictability with the system is another topic that deserves further 
study.

A reason for this kind of phenomenon is that causality has changed, and hence predictability is being lost. In 
general causality varies with time; estimated in Fig. 1 is an overall one over the entire period in question. Vary-
ing causality has been examined in many different studies (e.g.,24,38). Something similar happens with El Niño 
cycle’s causality, as discovered  in39. In order to see how causality evolves, we need to choose a time window of 
some length, compute the information flow on that window, slide it forward and repeat the computation. The 
resulting information flow on a window can be taken as that at the center of that window. For this purpose, the 
window size should be as small as possible, so as to arrive at a causality local enough. But it must also be long 
enough to have “sufficient” data. Here for a rough estimate, we choose it to be one solar cycle. Considering its 
short length, we can only try the bivariate formula (7). The results are plotted in Supplementary Fig. S13. As 
displayed, the causal pattern from SSN to the SST lagged by 45 years looks good in 1960s, 1970s, 1990s, 2000s, 
and is not good in 1950s, 1980s. In the most recent decade, 2010–2020, the pattern has changed to something 
else, with a strong center appearing in the equatorial region north of Australia, as the one in 1950s and 1980s. 
Here we emphasize that this is just a rough estimate, since the system does not need to be 2D, and, besides, the 
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series for just one solar cycle are generally not long enough. But the results do give us a hint on the reduction in 
causality, which leads to the predictability loss as observed above.

The loss of predictability may be embedded in other time delayed series. We hence try a 2D causality analysis 
with other lags for the interval 2010–2020. Interestingly, the familiar pattern reappears for many lags between 
10 and 43 years, as shown in Supplementary Fig. S14. Note again these information flows are for reference only, 
though the major features are significant (not shown). This, however, guides our choice of delays in building 
the model. In order to utilize the observations over the recent decade, we hence re-train the model using these 
new delayed series, with all other settings as before. The prediction together with its RMS (middle panel) is 
shown in Fig. 9. For clarity, the ensemble mean and standard deviation are zoomed in on the interval 2018–2030 
(lower panel). By the RMS distribution, the prediction after 2030 with this model should be interpreted with 
caution because of the large uncertainty thenafter.

Identified from the figure are four local maxima since 2020, plus two cold events. These events are tabulated 
in Table 1. The confidence interval is at a level of 90% (standard deviation multiplied by 1.65). From the table it 
is likely that an El Niño Modoki will take place in the winter (DJF) of 2022–2023. Also there could be an El Niño 
Modoki in the winter of 2025–2026 (marginal). Very probably La Niña Modoki events will occur in the winters 
of 2020–2021 and 2030–2031. Of course the projected event around 2030 is more than 10 years ahead; caution 
should be used here. These are what we can tell so far. As we have claimed before, the purpose of this study is 
just to report a fact about the accomplished predictions for the El Niño Modoki events during the past century; 
for real-time forecasts, a huge amount of effort should be invested in an operational mode, and that is certainly 
beyond the scope of this short report.
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Figure 9.  Top: As Fig. 5, but using a model based on series with delays from 10 through 43 years, with the time 
intervals forming the training set and validation set being, respectively, 01/1920–12/2013 and 01/2014–02/2020. 
Middle: The corresponding standard deviation around the ensemble mean. Bottom: A close-up of the prediction 
over 2018–2030. (Figure generated with MATLAB, Version 6.5. http:// www. mathw orks. com/).
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Concluding remarks
The rigorously developed theory of information  flow20,40, and hence causality, during the past decade provides 
a natural way for one to seek predictor(s) for a dynamical phenomenon, and this forms the basis of causal AI. 
In this study, it is found that the delayed causal pattern from SSN to the Pacific SST resembles very much the 
El Niño Modoki mode; the former hence can be used to predict the latter. Indeed, as detailed above, with all the 
observations we have had so far, the El Niño Modoki events so far as of today can be essentially predicted based 
solely on SSN at a lead time of 12 years or over. Particularly, the strong event in 2009/2010 and the elusive event 
during 2014–2016 have been well predicted (Fig. 2b). Moreover, the prediction of the events in the winters of 
2019–2020 and 2020–2021 made early in 2018 (when the original manuscript was prepared) agrees well with 
the observation.

We, however, do NOT claim that El Niño Modoki is ultimately driven by solar activities. Indeed, as is found 
above, the causality is actually changing. It is NOT our intention in this study to investigate on the dynamical 
aspects of this climate mode. We just present an observational fact on fulfilled predictions. There is still a very 
long way to go in unraveling the dynamical origin(s) of El Niño Modoki. The success of atmosphere-ocean 
coupled models during the past decades confirms that the canonical El Niño is an intrinsic mode in the climate 
system; El Niño Modoki may be so also. Nonetheless, despite the long-standing controversy on the role of solar 
activity in climate change (see a review  in41), there does exist evidence on the lagged response as identified here; 
the North Atlantic climate response is such an  example42.

Nonetheless, one may wonder why there exists such a high predictability so far as of today. As commented 
by a reviewer, the results seem to suggest that “the variability in solar forcing is amplified and nonlinearly con-
verted by the climate system to result, with a delay, in the evolution of the El Niño Modoki pattern,” and that, if 
there are first principle governing equations for El Niño Modoki, the related “SST initial condition is completely 
determined by the past SSN predictor.” These inspiring conjectures, among many others, need to be carefully 
addressed in future studies, in order to have a better understanding of the predictability as observed with the 
aid of our causality analysis.

As a final remark, it is interesting to see that the maximum information flow from the SSN lagged by 45 years 
to the Pacific SST agrees very well with frequent occurrences of El Niño Modoki during the period of 2000–2010: 
three of the four El Niño events are of this type (i.e., the 02/03, 04/05, 09/10 episodes). If we go back to 45 years 
ago, the sun is most active during the period of 1955–1965 (Fig. 10) Particularly, in the wavelet spectrum, there is 
a distinct high at the scale level of 4 (corresponding to a time scale of 2−4−(−15) = 2048 days ≈ 5.6 years)—Recall 
that this is roughly the sampling interval we used in choosing the time-delay series to form the ν-dimensional 
system and compute the information flow. After that period, the sun becomes quiet, correspondingly we do not 
see much El Niño Modoki for the decade 2010–2020. But two peaks of SSN are seen in the twenty years since 

Table 1.  A table of the timings and strengths of the possible extreme El Niño Modoki events in 2020s. The 
confidence interval is at the 90% level.

El Niño Modoki DJF 19–20 DJF 22–23 DJF 25–26 DJF 28–29

EMI 0.67± 0.16 0.67± 0.24 0.54± 0.19 0.39± 0.20

La Niña Modoki DJF 20–21 DJF 29–30

EMI −1.03± 0.30 −1.30± 0.22

Figure 10.  Daily series and orthonormal wavelet spectrum of the sunspot numbers based on the spline wavelets 
built  in30. (Figure generated with MATLAB, Version 6.5. http:// www. mathw orks. com/).
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1975–1978. Does this correspondence herald that, after entering 2020, in the following two decades, El Niño 
Modoki may frequent the equatorial Pacific again? We don’t know whether this indeed points to a link, but it for 
sure worths an examination. This question, among others, are to be addressed in future studies. (For reference, 
the codes used in this study are available at http:// www. ncoads. org/ upload/ enso_ modoki_ data_ codes. tar. gz, 
or https:// github. com/ EasyC an1994/ ENSO.)

Method
Estimation of information flow and causality among multivariate time series. Causal inference 
is of central importance in scientific  research43. During the past few years it has attracted enormous interest as 
its role in AI gradually comes to be known. Causal inference is traditionally formulated as a statistical testing 
problem ever since  Granger44. Recently, however, it has been recognized that causality is actually a real physi-
cal notion attached to information flow, and can be rigorously derived from first  principles20. Information flow 
is a concept in general physics which has wide applications. Its importance lies beyond the literal meaning in 
that it implies causation, and, moreover, provides a quantitative measure of causation. Though with a history of 
research for more than 40 years, it has just been rigorously formulated, initially motivated by the predictability 
study in atmosphere-ocean  science19. Since its birth it has been validated with many benchmark dynamical sys-
tems such as baker transformation, Hénon map, Rössler system, etc. (cf.20,40), and has been applied with success 
to different problems in earth system science, neuroscience and quantitative finance, e.g.,22–24, to name a few. 
Hereafter we just give a very brief introduction.

Consider a dynamical system

where x and F are ν-dimensional vector, B is a ν-by-m matrix, and ẇ an m-vector of white noise. Here we follow 
the convention in physics and do not distinguish the notation of a random variable from that of a deterministic 
variable.  Liang20 established that the rate of uncertainty (in terms of Shannon entropy) transferred from x2 to 
x1 , or rate of information flowing from x2 to x1 (in nats per unit time), is:

where E stands for mathematical expectation, ρ1 = ρ1(x1) is the marginal probability density function (pdf) of 
x1 , ρ , and g11 =

∑m
j=1 b1jb1j . The units are in nats per unit time. Ideally if T2→1 = 0 , then x2 is not causal to x1 ; 

otherwise it is causal (for either positive or negative information flow). But in practice significance test is needed.
Generally T2→1 depends on (x3, . . . , xν) as well as (x1, x2) . But it has been established  that21 it is invariant upon 

arbitrary nonlinear transformation of (x3, x4, . . . , xν) , indicating that information flow is an intrinsic physical 
property. Also established is the principle of nil causality, which asserts that, if the evolution of x1 is independent 
of x2 , then T2→1 = 0 . This is a quantitative fact that all causality analyses try to verify in applications, while in 
the framework of information flow it is a proven theorem.

In the case of linear systems where F(x, t) = Ax , A = (aij) , the formula (3) becomes quite  simple20:

where σij is the population covariance. An immediate corollary is that causation implies correlation, while cor-
relation does not imply causation, fixing the long-standing philosophical debate over causation versus correlation 
ever since  Berkeley45.

To arrive at a practically applicable formula, we need to estimate (4), given ν observational time series. The 
estimation roughly follows that of  Liang40, and can be found  in46. The following is just a brief summary of some 
relevant pieces as detailed  in46.

Suppose we have ν time series, xi , i = 1, . . . , ν , and these series are equi-spaced, all having N data points xi(n) , 
n = 1, 2, . . . ,N . Assume a linear model F(x; t) = Ax , A = (aij) being a ν × ν matrix), and B being a ν × ν diago-
nal matrix. To estimate T2→1 , we first need to estimate a12 . As shown before  in40, when aij and bi are constant, the 
maximal likelihood estimator (mle) is precisely the least square solution of the following N (overdetermined) 
algebraic equations

where ẋ1(n) = (x1(n+ 1)− x1(n))/�t is the differencing approximation of dx1/dt using the Euler forward 
scheme, and �t is the time stepsize (not essential; only affect the units). Following the procedure  in40, the least 
square solution of (a11, . . . , a1ν) , (â11, . . . , â1ν) , satisfies the algebraic equation

(2)
dx

dt
= F(t; x)+ B(t; x)ẇ,

(3)
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where

are the sample covariances. Hence â12 = 1
detC ·

∑

ν

j=1 �2jCj,d1 where �ij are the cofactors. This yields an estima-
tor of the information flow from x2 to x1:

i.e., Eq. (6) in “Method”. Here detC is the determinant of the covariance matrix C , and now T is understood as 
the MLE of T. We slightly abuse notation for the sake of simplicity.) For two-dimensional (2D) systems, ν = 2 , 
the equation reduces to

recovering the familiar one as obtained  in40 and frequently used in applications (e.g.,22–24).

Significance test. The significance of T̂2→1 in (6) can be tested following the same strategy as that used  in40. 
By the MLE property (cf.47, when N is large, T̂2→1 approximately follows a Gaussian around its true value with a 
variance 

(

C12
C11

)2
σ̂
2
a12

 . Here σ̂ 2
a12

 is the variance of â12 , which is estimated as follows. Denote by θ the vector of 
parameters to be estimated; here it is (a11, a12, a13, . . . , a1ν; b1) . Compute the Fisher information matrix I = (Iij)

where ρ(xn+1|xn) is a Gaussian for a linear model:

The computed entries are then evaluated using the estimated parameters, and hence the Fisher information 
matrix is obtained. It has been established (cf.47) that I−1

/N is the covariance matrix of θ̂ , from which it is easy 
to find the entry σ̂ 2

a12
 [here it is the entry (2,2)]. Given a level, the significance of an estimated information flow 

can be tested henceforth.
More robust testing requires that surrogate data be generated for estimating the background noise of observed 

 data48. Autoregressive (AR) surrogates provide typical realizations; particularly, red noise can be perfectly 
described by the AR model of the first order, written AR(1), while a large portion of climate data has a red noise 
background. See the comprehensive  review48 and the references therein. We hence adopt for our purpose the 
following model

where ǫ(n) is a standard Gaussian random variable, and a, γ , and b are parameters. By the algorithm in Lancaster 
et al.48, with the AR(1) noise assumption, surrogates for a given series are generated via two steps: (1) fit the series 
to the model to obtain the parameters as mentioned above; (2) produce a set of surrogate series by solving (8) 
with the estimated a, γ and b, and a set of random initial conditions.

The null hypothesis is that the given time series can be fully described by the above AR(1) noise model, which 
implies that, for two series, there is no causality between the respective surrogates of them. To reject the null 
hypothesis, the information flows computed with the observational series should lie beyond the preset percentile 
of the information flows based on the surrogates. Usually one may choose a 90th percentile, a 95th percentile, 
or a 99th percentile.

The number of surrogates, written M, makes an issue in this study, as there are more than 10,000 time series 
within the study domain. According  to48, M = 2K/α − 1 surrogates are needed for a two-sided test. Here K is 
some integer and α the significance level. So for K = 1 , α = 0.05 , M = 39 . In this study we have tried M = 100 
and M = 200 , and the results are similar.

Data availability
The data used in this study include the SST and sunspot number (SSN) from National Oceanic and Atmospheric 
Administration (NOAA) (SST: http:// www. esrl. noaa. gov/ psd/ data/ gridd ed/ cobe2. html; SSN: https:// wwww. 
esrl. noaa. gov/ psd/ gcos_ wgsp/ Times eries/ Data/ sunsp ot. long. data), and the El Niño Modoki Index (EMI) from 
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) (http:// www. jamst ec. go. jp/ aplin fo/ sinte 
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xf/e/ elnmo doki/ data. html). Among them SST has a horizontal resolution of 1o × 1o . Temporally all of them are 
monthly data, and at the time when this study was initiated, SST, EMI, and SSN respectively have a time cover-
age of 01/1850–12/2018, 01/1870–11/2018, and 05/1847–12/2017. Daily SSN is also used for spectral analysis; 
it covers the period 15/04/1921–31/12/2010.

Code availability
All the codes (and some of the downloaded data) are available at http:// www. ncoads. org/ upload/ enso_ modoki_ 
data_ codes. tar. gz, or https:// github. com/ EasyC an1994/ ENSO.

Received: 15 August 2020; Accepted: 20 August 2021

References
 1. McPhaden, M. J. Playing hide and seek with El Niño. Nat. Clim. Change 5, 791–795 (2015).
 2. Ashok, K. & Yamagata, T. The El Niño with a difference. Nature 461, 481 (2009).
 3. Trenberth, K. E. & Stepaniak, D. P. Indices of El Niño evolution. J. Clim. 14, 1697–1701 (2001).
 4. Larkin, N. K. & Harrison, D. E. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. 

Geophys. Res. Lett. 32, L16705 (2005).
 5. Yu, J. -Y., & Kao, H. -Y. Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. 

Res., 112, D13106, https:// doi. org/ 10. 1029/ 2006J D0076 54 (2007).
 6. Ashok, K., Behera, S. K., Rao, S. A., Weng, H. Y. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 

Oceans 112, C11007 (2007).
 7. Kug, J. S., Jin, F. F. & An, S. I. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 

(2009).
 8. Fu, C., Diaz, H. F. & Fletcher, J. O. Characteristics of the response of sea surface temperature in the central Pacific associated with 

warm episodes of the Southern Oscillation. Mon. Weather Rev. 114, 1716–1738 (1986).
 9. Wang, C. Z., Deser, C., Yu, J. Y., Dinezio, P. & Clement, A. El Niño and Southern Oscillation (ENSO): A review. In Coral Reefs of 

the Eastern Tropical Pacific (eds Glynn, P. W. et al.) 85–106 (Springer, 2017).
 10. Behera, S. & Yamagata, T. Climate Dynamics of ENSO Modoki Phenomenon. Oxford Res. Encyclopedi.  https:// doi. org/ 10. 1093/ 

acref ore/ 97801 90228 620. 013. 612 (2018).
 11. Zhang, R., Min, Q. & Su, J. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anoma-

lous western North Pacific anticyclone. Sci. China Earth Sci. 60, 1124–1132 (2017).
 12. Barnston, A. G., Kumar, A., Goddard, L. & Hoerling, M. P. Improving seasonal prediction practices through attribution of climate 

variability. Bull. Am. Meteorol. Soc. 2005, 59–72 (2005).
 13. Xie, R. & Jin, F.-F. Two leading ENSO modes and El Niño types in the Zebiak–Cane model. J. Clim. 31, 1943–1962 (2018).
 14. Zebiak, S. E. & Cane, M. A. A model El Niño-Southern Oscillation. Mon. Weather Rev. 115, 2262–2278 (1987).
 15. Yu, J. Y. & Kim, S. T. Three evolution patterns of central-pacific El Niño. Geophys. Res. Lett. 37, L08706 (2010).
 16. Chen, D. et al. Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci.https:// doi. org/ 10. 1038/ NGEO2 399 (2015).
 17. Tang, Y. M. et al. Progress in ENSO prediction and predictability study. Natl. Sci. Rev. 5, 826–839 (2018).
 18. Von Storch, H. Statistics—An indispensable tool in dynamical modeling. In Models in Environmental Research (eds von Storch, 

H. & Flöser, G.) (Springer Verlag, 2001).
 19. Liang, X. S. & Kleeman, R. Information transfer between dynamical system components. Phys. Rev. Lett. 95, 244101 (2005).
 20. Liang, X. S. Information flow and causality as rigorous notions ab initio. Phys. Rev. E 94, 052201 (2016).
 21. Liang, X. S. Causation and information flow with respect to relative entropy. Chaos 28, 075311 (2018).
 22. Vannitsem, S., Dalaiden, Q. & Goose, H. Testing for dynamical dependence—Application to the surface mass balance over Ant-

arctica. Geophys. Res. Lett.https:// doi. org/ 10. 1029/ 2019G L0843 29 (2019).
 23. Hristopulos, D. T., Babul, A., Babul, S. A., Brucar, L. R. & Virji-Babul, N. Disrupted information flow in resting-state in adolescents 

with sports related concussion. Front. Hum. Neurosci. 13, 419. https:// doi. org/ 10. 3389/ fnhum. 2019. 00419 (2019).
 24. Stips, A., Macias, D., Coughlan, C., Garcia-Gorriz, E. & Liang, X. S. On the causal structure between CO2 and global temperature. 

Sci. Rep. 6, 21691. https:// doi. org/ 10. 1038/ srep2 1691 (2016).
 25. Johnson, E. N. & Kannan, S. K. Adaptive trajectory control for autonomous helicopters. J. Guidance Control Dynam. 28(3), 524–538 

(2005).
 26. Kim, P., Rogers, J., Sun, J. & Bollt, E. Causation entropy identifies sparsity structure for parameter estimation of dynamic systems. 

J. Comput. Nonlinear Dynam. 12(1), 011008. https:// doi. org/ 10. 1115/1. 40341 26 (2017).
 27. Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the northern hemisphere winter. Mon. 

Weather Rev. 109, 784–812 (1981).
 28. Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Lecture Notes in Mathematics Vol. 898 

(eds Rand, D. A. & Young, L.-S.) 366–381 (Springer-Verlag, 1981).
 29. Abarbanel, H. D. I. Analysis of Observed Chaotic Data (Springer-Verlag, 1996).
 30. Liang, X. S. & Anderson, D. G. M. Multiscale window transform. SIAM J. Multisc. Model. Simul. 6(2), 437–467 (2007).
 31. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
 32. Ham, Y.-G., Kim, J.-H. & Luo, J. J. Deep learning for multi-year ENSO forecasts. Naturehttps:// doi. org/ 10. 1038/ s41586- 019- 1559-7 

(2019).
 33. MacKay, D. J. C. Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992).
 34. Heaton, J. Introduction to Neural Networks with Java (Heaton Research Inc., 2008) (44 pp.).
 35. Rasp, S. & Lerch, S. Neural networks for postprocessing ensemble weather forecasts. Mon. Weather Rev. 146, 3885–3900 (2018).
 36. Yang, Q., Lee, C.-Y. & Tippett, M. K. A long short-term memory model for global rapid intensification prediction. Weather Fore-

casthttps:// doi. org/ 10. 1175/ WAF-D- 19- 0199.1 (2020).
 37. Hutson, M. Artificial intelligence faces reproducibility crisis. Science 359, 725–726 (2018).
 38. Liang, X. S. Normalizing the causality between time series. Phys. Rev. E 92, 022126 (2015).
 39. Jajcay, N., Kravtsov, S., Sugihara, G., Tsonis, A. A. & Paluš, M. Synchronization and causality across time scales in El Niño Southern 

Oscillation. NPJ Clim. Atmos. Sci. 1, 33. https:// doi. org/ 10. 1038/ s41612- 018- 0043-7 (2018).
 40. Liang, X. S. Unraveling the cause-effect relation between time series. Phys. Rev. E. 90, 052150 (2014).
 41. Bard, E. & Frank, M. Climate change and solar variability: What’s new under the sun?. Earth Planet Sci. Lett. 248, 1–14 (2006).
 42. Scaife, A. A. et al. A mechanism for lagged North Atlantic climate response to solar variability. Geophys. Res. Lett. 40, 434–439 

(2013).
 43. Pearl, J. Causality, Models, Reasoning, and Inference 2nd edn. (Cambridge University Press, 2009).

http://www.jamstec.go.jp/aplinfo/sintexf/e/elnmodoki/data.html
http://www.ncoads.org/upload/enso_modoki_data_codes.tar.gz
http://www.ncoads.org/upload/enso_modoki_data_codes.tar.gz
https://github.com/EasyCan1994/ENSO
https://doi.org/10.1029/2006JD007654
https://doi.org/10.1093/acrefore/9780190228620.013.612
https://doi.org/10.1093/acrefore/9780190228620.013.612
https://doi.org/10.1038/NGEO2399
https://doi.org/10.1029/2019GL084329
https://doi.org/10.3389/fnhum.2019.00419
https://doi.org/10.1038/srep21691
https://doi.org/10.1115/1.4034126
https://doi.org/10.1038/s41586-019-1559-7
https://doi.org/10.1175/WAF-D-19-0199.1
https://doi.org/10.1038/s41612-018-0043-7


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17860  | https://doi.org/10.1038/s41598-021-97111-y

www.nature.com/scientificreports/

 44. Granger, C. W. J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 
(1969).

 45. Berkeley, G. A treatise concerning the principles of human knowledge https:// www. maths. tcd. ie/ ~dwilk ins/ Berke ley/ Human Knowl 
edge/ 1734/ HumKno. pdf (1710).

 46. Liang, X. S. Normalized multivariate time series causality analysis and causal graph reconstruction. Entropy 23, 679 (2021).
 47. Garthwaite, P. H., Jolliffe, I. T. & Jones, B. Statistical Inference (Prentice-Hall, 1995).
 48. Lancaster, G., Iatsenko, D., Pidde, A., Ticcinelli, V. & Stefanovska, A. Surrogate data for hypothesis testing of physical systems. 

Phys. Rep. 748, 1–60 (2018).

Acknowledgements
The long discussion with Richard Lindzen on August 17, 2019, and the email exchange late in February 2020 
about this study, are sincerely appreciated. The constructive comments from Dmitry Smirnov and four anony-
mous reviewers have helped improve the manuscript significantly. We thank JAMSTEC and NOAA for making 
the data available, and thank National Science Foundation of China (No. 41975064), Jiangsu Innovation Research 
and Entrepreneurship Program (No. 2015), and Jiangsu Chair Professorship for the financial support. This paper 
is dedicated to Hengfu ZOU (then-director of CEMA/CIAS), Dong QIU and Guangqian WANG (then-presidents 
of CUFE), Lianshui LI and Jianqing JIANG (then-presidents of NUIST), whose kind invitations allowed XSL to 
witness the rapid growth of China.

Author contributions
X.S.L. initialized the research, invented the methodology, provided the software, designed the experiments, did 
the computation (causality analysis and prediction), and wrote the manuscript. F.X. co-designed the experiments 
and did the computation (causality analysis). Y.R. co-designed the experiments, did the computation (predic-
tion) and data processing. R.Z. co-designed the experiments. X.T. conducted part of the validation. F.Z. helped 
process the data. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 97111-y.

Correspondence and requests for materials should be addressed to X.S.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://www.maths.tcd.ie/~dwilkins/Berkeley/HumanKnowledge/1734/HumKno.pdf
https://www.maths.tcd.ie/~dwilkins/Berkeley/HumanKnowledge/1734/HumKno.pdf
https://doi.org/10.1038/s41598-021-97111-y
https://doi.org/10.1038/s41598-021-97111-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	El Niño Modoki can be mostly predicted more than 10 years ahead of time
	Seeking predictor(s) for El Niño Modoki with information flow analysis. 
	Prediction of El Niño Modoki. 
	Causality evolution and prediction into the future. 
	Concluding remarks
	Method
	Estimation of information flow and causality among multivariate time series. 
	Significance test. 

	References
	Acknowledgements


